Skip to main content

VI²M is the right formula for IRD

IRD is at ITS America 2016 San Jose to showcase the VectorSense tyre sensor suite for traffic and pavement design applications in conjunction with the VI²M data collection and presentation software suite. The VectorSense tyre sensor suite is a new in-road sensor technology that provides vehicle position and individual tyre footprint information for use in traffic data collection programs, commercial vehicle operations and toll road operations. This additional and advanced vehicle data provides for differ
June 13, 2016 Read time: 2 mins
Rish Malhotra of IRD
857 IRD is at ITS America 2016 San Jose to showcase the VectorSense tyre sensor suite for traffic and pavement design applications in conjunction with the VI2M data collection and presentation software suite.

The VectorSense tyre sensor suite is a new in-road sensor technology that provides vehicle position and individual tyre footprint information for use in traffic data collection programs, commercial vehicle operations and toll road operations. This additional and advanced vehicle data provides for differentiation between single standard, ‘super single’, and dual tyre width configurations – vital information for predicting pavement damage.

VectorSense sensors provide data on all types of vehicles, enabling engineers and planners to collect and analyse traffic data to optimise infrastructure investments such as bike lanes, bike paths and bike share locations. With input from VectorSense sensors, IRD says the VI2M data collection system can provide web-based reports on different tyre configurations and vehicle types. VI2M can detect all types of vehicle configurations, including bicycles, motorcycles, three-wheeled vehicles and oversized vehicles with non-standard axle arrangements.

VI2M provides an easy-to-use web-based system of dashboards that graphically represents data stored in a central repository. In addition to tabular reports on vehicle classes and axle counts, the system can generate plotted graphs for lane position, wheel measurements, and wheel type at multiple sites.

The software suite allows users to combine data from multiple sensor types and multiple locations to create a complete picture of activity across their jurisdiction.

For more information on companies in this article

Related Content

  • Cross referencing data sets reveals now decision support information
    November 18, 2014
    Combining previously unrelated sets of data can provide an in-depth view of travel patterns. "Through the use of analytical tools, Urban Insights seeks to help transportation organisations benefit from the vast amounts of detailed data they collect every day.”
  • Machine vision’s transport offerings move on apace
    June 30, 2016
    Colin Sowman considers some of the latest advances in camera technology and transport-related vision technology applications. Vision technology in the transportation sector is moving apace as technical developments on both the hardware and software sides combine to make cameras more multifunctional with a single digital camera now able to cover a multitude of tasks.
  • New graphic controller from Eyevis
    March 18, 2014
    Eyevis’ new netPIX 4900 graphic controller is claimed to set performance standards for video wall operation. New input and output cards and a new switch-fabric-backplane enables input and output processing of 4K/ultra HD signals and HDMI audio transmission. The graphic controller generates a logical desktop interface from single outputs that can be used for the presentation of network data, video and graphic sources. All input signals can be moved, scaled and individually placed on the video wall. Its mult
  • Cost Benefit: Utah traffic light scheme pays dividends
    March 15, 2019
    A traffic signal control scheme in Utah is being taken up by other US authorities. David Crawford finds out how the Beehive State is leading the way in DoT and driver savings Growing numbers of US state departments of transportation (DoTs) and their road users are gaining real financial benefits from an advanced approach to traffic signal monitoring recently developed in Utah. Central to the system is its use of automated traffic signal performance measures (ATSPM) technology, brought in to improve th