Skip to main content

Kistler showcases OIML-certified WIM technology

Kistler will use Intertraffic Amsterdam to highlight a major Weigh-in-Motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML).
February 16, 2016 Read time: 2 mins

657 Kistler will use Intertraffic Amsterdam to highlight a major Weigh-in-Motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML).

As the company points out, to address the ever increasing problem of pavement damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles. However, the chain has been missing the last link that would allow the implementation of automatic enforcement, based on vehicle weight data, to introduce toll-by-weight models in a free-flow environment or to obtain legally compliant trading data for invoicing industrial goods loaded on trucks by weight. This growing demand for certified WIM systems accredited according to international standards has been recently met by Kistler’s OIML-certified WIM technology.


Kistler is the first WIM manufacturer to have received the International Organisation of Metrology (OIML) R-134 certificate for vehicle weighing with strip sensors. Supported by this certificate, the company’s WIM systems based on maintenance-free Lineas quartz WIM sensors and the Kistler WIM data logger can now be used for legal applications.

In the world of international WIM standards, the company says there is a significant difference in the definition of the accuracy classes. While COST323 and ASTM E1318 state that only 95% of WIM measurements need to fulfil the declared accuracy, the OIML requires all (100%) measurements to be in the requested accuracy class. The Kistler WIM system meets OIML accuracy F5 meaning that for initial verification all errors are below ±2.5 % and during standard operation the system has a measurement error smaller than ±5%.

For more information on companies in this article

Related Content

  • Brazil opts for freeflow tolling
    April 9, 2014
    David Crawford explores the technical background of Brazil’s First multi-lane free-flow tolling system. The 2013 opening of Brazil’s first fully-operational, all-vehicle, multi-lane free-flow (MLFF) tolling system in the state of São Paolo has set the scene for a new phase of modern electronic fee collection (EFC) deployment in Latin America’s largest country. It has toll programmes at both federal and state levels, with São Paulo – the most populous state, with the largest road network – leading in the awa
  • ProPart AV trial crosses the line
    March 25, 2020
    The perceived safety benefits of autonomous vehicles can only be realised with precise positioning. Ben Spencer reports from Sweden on work by a European consortium which aims to use the technology to allow a truck to carry out an automated lane change
  • IRD gets Illinois Tollway deals
    May 16, 2022
    CAN$1.2m deal involves replacing VWiM sites with technology upgrades in US state
  • Cooperative infrastructure - the future for tolling?
    February 2, 2012
    Leading European tolling solution providers give a snapshot of how they think tolling's technological future will look