Skip to main content

VTT launches AV for snow and ice conditions, Finland

VTT Technical Research Centre (VTT) of Finland has launched what it claims to be the first autonomous car (AC) to have successfully driven on a real snow-covered road. It also reached speeds of up to 40 km/h during a trial on the Aurora E8 intelligent road in Muonio.
December 18, 2017 Read time: 2 mins
814 VTT Technical Research Centre (VTT) of Finland has launched what it claims to be the first autonomous car (AC) to have successfully driven on a real snow-covered road. It also reached speeds of up to 40 km/h during a trial on the Aurora E8 intelligent road in Muonio.


Called Martti and based on research from VTT’s AC Marilyn, the vehicle is equipped with cameras, antennas, sensors and three laser sensors that detect the environment ahead. By mid-January, it will also be equipped with communication modules which are designed with the intention of communicating with digital transport infrastructure.

To enhance the car’s capacity to function on slippery road surfaces, VTT will begin changing the wavelengths of the optical components, increasing the resolution of the radar, and building more intelligence into the sensors’ software.

Matti Kutila from VTT’s RobotCar Crew, said: “When in spring 2017 we, the researchers, taught the automated car Marilyn to drive, this autumn it has been teaching us on how to make Martti such that it can get along with its spouse, and follow GPS and positioning information on its route. Martti has been designed for demanding weather conditions and Marilyn shines as the queen of urban areas.

“We already have at our disposal an intelligent roadside unit, capable of feeding local information for the insatiable needs of Martti and Marilyn. This cart dubbed Marsu contains measuring devices for friction data and a communications module serving as a base station. Furthermore, next Spring one of our vehicles can also be spotted in forest environments, when Marilyn and Martti get a new friend capable of tackling all terrains,” Kutila added.

Related Content

  • May 15, 2018
    VTT 's robot car now sees through fog
    VTT Technical Research Centre of Finland says it is one step closer to creating a safe automated vehicle through upgrades made to its Marilyn robot car. The vehicle can now see through foggy and snowy conditions, navigating without stopping. Additionally, VTT says, the car can see humans through fog and avoid accidents automatically. Marilyn now has light imaging, detection, and ranging (Lidar) mounted on its roof, which the company claims enables it to see wavelengths beyond the human senses.
  • May 18, 2017
    VTT's autonomous cars take to public roads
    The autonomous cars developed by VTT Technical Research Centre of Finland are able to exchange information with each other and their driving environment. They are able to follow a pre-programmed route and avoid collisions with sudden obstacles without input from the driver. The cars currently require the lane markings or sides of the road to be visible. However, by 2020, VTT says the cars will be driving in more demanding conditions on roads covered in gravel and snow. The autonomous cars feature a thermal
  • September 26, 2014
    Keeping a weather eye on road conditions
    Drive C2X has shown that advanced warning of poor road conditions could cut fatalities, as David Crawford explains. Connected vehicle (CV)-based warning technologies could mean 6% fewer deaths and 5% fewer injuries in road traffic accidents in Europe, according to the final results of the European Commission (EC) co-funded DRIVE C2X project. According to the European Centre for Information and Communication Technologies (EICT) which provided management support, these “prove that CV systems work and can hav
  • November 28, 2017
    VTT and EEE Communications partner on black ice detector
    EEE Innovations (EEE) and VTT Technical Research Centre (VTT) of Finland have launched a software-based solution that detects black ice which it claims can reduce fuel consumption by 20%. It is available for heavy vehicles but can also be used for private vehicles. The solution aims to detect slippery road conditions in real time and has also been piloted in an EU-level project. Data gathered from the vehicles is refined and sent out to other motorists. The driver guidance system can be installed as a