Skip to main content

UK university unveils technology to solve 200-year old railway problem

A failsafe track switch designed to eradicate a 200-year-old problem on the railway has been created by engineers at Loughborough University in the UK. The technology, known as Repoint, is a robust and reliable points mechanism which will improve safety, reduce maintenance costs and boost capacity on the railways.
September 10, 2015 Read time: 2 mins
A failsafe track switch designed to eradicate a 200-year-old problem on the railway has been created by engineers at Loughborough University in the UK.

The technology, known as Repoint, is a robust and reliable points mechanism which will improve safety, reduce maintenance costs and boost capacity on the railways.

Supported by the UK Rail Safety and Standards Board (RSSB), Repoint is the result of work carried out with industry experts into improved switches to override track switch failures which can lead to train derailment.

Using safety concepts derived from aerospace and the nuclear industry, Repoint corrects a failed switch through a patented arrangement of interlocking rail ends which incorporate a sliding arrangement similar to a breather switch. A lift and drop mechanism allows for expansion and provides an additional locking mechanism with virtually no friction losses.

The mechanism can also move the switch in fractions of a second compared to the current four seconds for conventional designs, during which time a train may have travelled a distance of 200 metres. The university claims that Repoint’s ability to reduce this time to under a second improves rail capacity without the need to build new infrastructure.

Professor Roger Dixon, head of the Control Systems Research Group, said the next step was to build a prototype switch to be trialled in a non-passenger environment either on a test track or a siding.

“Repoint is a robust alternative to conventional switches that breaks with 200 years of tradition to offer a change in design that is inherently failsafe and fit for a 21st century rail network,” he said. “It also has the potential to deliver huge cost savings, and will result in a significant increase in reliability and safety to the rail industry worldwide.

“We are currently seeking development partners from around the world to work with us to roll out the patented technology across international rail networks.”

Related Content

  • July 31, 2012
    Dubai metro - the world's longest automated rail system
    David Crawford reviews the recent opening of Dubai's Red Line. The US$7.6bn Dubai Metro, the Phase I Red Line of which started partial operation in September 2009, will be the world's longest driverless rail system on its planned completion in 2011. With a total length of some 75km, it will then overtake the 68.7km Vancouver SkyTrain and be able to carry over 1.2 million passengers on a typical day.
  • March 17, 2016
    Inland waterways can de-stress city roads
    David Crawford looks at an under-utilised solution for city-centre deliveries. The use of rivers and canals for moving freight is a well-established mode in North Western Europe, where it can take advantage of an intensively developed network. In the Netherlands, 40% of the total volume of goods transported internally goes by water; the figure for Flanders (the neighbouring Dutch-speaking region of Belgium) is 11.5%.
  • October 28, 2019
    C/AVs could mean cheaper roads
    The safety benefits of C/AVs have long been promoted – but research suggests they should also contribute to cheaper roads. David Crawford investigates the potential benefits in infrastructure costs Building narrower freeway lanes to accommodate the enhanced route-tracking capabilities of connected and autonomous vehicles (C/AVs), running in platoon conditions, could result in cost savings of £0.5 million (€0.56 million or US$6.5 million) for every km of road length built. Such benefits could be secur
  • February 25, 2015
    USDOT expands real-time travel information with US$2.6 million in grants
    The US Department of Transportation's Federal Highway Administration (FHWA) has announced $2.571 million in grants to expand the use of real-time travel information in 13 highly congested urban areas across ten states. Known as integrated corridor management, or ICM, the grants will help selected cities or regions combine numerous information technologies and real-time travel information from highway, rail and transit operations. Such tools can help engineers make better decisions about congestion managemen