Skip to main content

UK university unveils technology to solve 200-year old railway problem

A failsafe track switch designed to eradicate a 200-year-old problem on the railway has been created by engineers at Loughborough University in the UK. The technology, known as Repoint, is a robust and reliable points mechanism which will improve safety, reduce maintenance costs and boost capacity on the railways.
September 10, 2015 Read time: 2 mins
A failsafe track switch designed to eradicate a 200-year-old problem on the railway has been created by engineers at Loughborough University in the UK.

The technology, known as Repoint, is a robust and reliable points mechanism which will improve safety, reduce maintenance costs and boost capacity on the railways.

Supported by the UK Rail Safety and Standards Board (RSSB), Repoint is the result of work carried out with industry experts into improved switches to override track switch failures which can lead to train derailment.

Using safety concepts derived from aerospace and the nuclear industry, Repoint corrects a failed switch through a patented arrangement of interlocking rail ends which incorporate a sliding arrangement similar to a breather switch. A lift and drop mechanism allows for expansion and provides an additional locking mechanism with virtually no friction losses.

The mechanism can also move the switch in fractions of a second compared to the current four seconds for conventional designs, during which time a train may have travelled a distance of 200 metres. The university claims that Repoint’s ability to reduce this time to under a second improves rail capacity without the need to build new infrastructure.

Professor Roger Dixon, head of the Control Systems Research Group, said the next step was to build a prototype switch to be trialled in a non-passenger environment either on a test track or a siding.

“Repoint is a robust alternative to conventional switches that breaks with 200 years of tradition to offer a change in design that is inherently failsafe and fit for a 21st century rail network,” he said. “It also has the potential to deliver huge cost savings, and will result in a significant increase in reliability and safety to the rail industry worldwide.

“We are currently seeking development partners from around the world to work with us to roll out the patented technology across international rail networks.”

Related Content

  • April 29, 2015
    Foundation funds research for informed campaigning
    ITS International talks to Professor Stephen Glaister, director of the transport research and lobbying organisation, the RAC Foundation. It is through the eyes of an economist that Professor Stephen Glaister, emeritus professor of transport and infrastructure at Imperial College London and director of the RAC Foundation, views current and future transport problems. Having spent 30 years at the London School of Economics and another 10 at Imperial, the move to the RAC Foundation was a radical departure from
  • September 15, 2014
    Moxa provides clear vision for Caldecott Tunnel’s Fourth Bore
    Caldecott Tunnel’s new Fourth Bore is utilising a bespoke high-capacity monitoring and communications network from Moxa. The Caldecott Tunnel connects Contra Costa and Alameda counties in Northern California and traditionally it has suffered severe congestion - especially during peak hours. Opened in 1937 as a twin-bore arrangement, by 1964 the increase in traffic volumes led to a third bore being added. Shortly after the third bore was opened a tidal flow was introduced with the centre bore alternating in
  • June 1, 2016
    B&C Transit modernises Miami-Dade Metrorail’s control systems
    Jason Gomez and Daniel Mondesir describe how passenger disruption was minimised during a major upgrading of the control room of Miami-Dade’s Metrorail. In 1984 when the Miami-Dade Department of Transportation and Public Works’ (DTPW) Metrorail system was launched in southern Florida, trains ran 18km along a single line and stopped at 10 stations.
  • January 20, 2012
    Home based real time travel information drives reduction in car use
    David Crawford investigates a new approach to discouraging car use - the 'kitchen as travel centre'. ITS technology working together with UK planning legislation is driving an innovative 'kitchen as travel centre' approach to home design which is boosting public transport as an alternative to car use. The combination is already proving powerful enough to assuage environmentalist opposition to major urban developments. It is also being seen as a way of delivering wider social and community benefits inside an