Skip to main content

Traction motors for electric vehicles change radically

According to Franco Gonzalez, senior technology analyst, IDTechEx, there are about 200 companies making traction motors for electric vehicles, rather like the 200 making the lithium-ion batteries that increasingly power them. However, whereas three types of lithium-ion battery chemistry and construction are taking almost all of the business, with traction motors the situation is much more complex because the diversity of needs calls for many very different types of motor from brushless out-runner motors for
February 26, 2016 Read time: 3 mins
According to Franco Gonzalez, senior technology analyst, 6582 IDTechEx, there are about 200 companies making traction motors for electric vehicles, rather like the 200 making the lithium-ion batteries that increasingly power them. However, whereas three types of lithium-ion battery chemistry and construction are taking almost all of the business, with traction motors the situation is much more complex because the diversity of needs calls for many very different types of motor from brushless out-runner motors for quad-copters to claw pole torque assist reversing alternators (TARA) for the new 48V mild hybrids that will be in volume production from 2017. Those mild hybrids will now qualify as electric vehicles because they will have pure electric silent take-off like regular ‘strong’ hybrids.

While it is true that an increasing number of traction motors for regular electric vehicles also work in reverse to generate electricity from braking and even when coasting, they are very different from TARAs which typically appear as belt-drive starter generators (BSG) and integrated starter generators (ISG) in 48V mild hybrids appearing in volume from 2017.

Mainstream electric vehicle reversing traction motors generate very infrequently whereas the opposite is true for a TARA. Regular hybrids and pure electric vehicles used hundreds of volts in most cases though there are a few that work at 48V including industrial and leisure runabouts and one supercar announced in 2016.  The new IDTechEx Research report, Mild Hybrid 48V Vehicles 2016-2031, looks at the synergies, opportunities and market potential in 48V systems for mild hybrids and, much less important, pure electric vehicles.

Chairman of IDTechEx, Dr Peter Harrop says, “It is important to look at the whole picture to see what is coming in traction motors for EVs. For instance those chasing efficiency and power to weight ratio may watch energy independent electric vehicles (EIV) because they have the most extreme requirements of all in the light-weighting and efficiency arena.

“Newcastle University in the UK is designing such motors for the Boeing drones that will stay up for five years at a time. On the other hand, we recently interviewed Nuon Solar Team, the winner of the Bridgestone trans-Australia 3000 kilometre solar race, and they claim a remarkable 96 per cent efficiency for the motors they design and use. Few regular electric cars even reach 90 per cent. Another solar team in the Netherlands has made a four seat EIV that has so many solar panels it can not only perform its tasks but donate energy to the grid as well and that claims 97 per cent efficiency for its electric motor.”

Related Content

  • May 31, 2017
    EVs are creating more and more of their own electricity, say IDTechEx Research
    The latest report from IDTechEx Research, Electric Vehicle Energy Harvesting/Regeneration 2017-2037, explains and forecasts the technologies involved in this key enabling technology. EH/R will be as important and sometimes more important than motors, batteries and power electronics: fabulous opportunities await vehicle, parts and material manufacturers unplugging into this future.
  • April 13, 2017
    Lithium batteries market and electric vehicles
    According to a new report published by Allied Market Research, the global lithium-ion battery market is expected to generate revenue of US$46.21 billion by 2022, with a CAGR of 10.8 per cent during the forecast period (2016-2022). The report indicates that the market for these batteries is expected to witness notable growth because of their increasing application in the automotive sector. Additional key factors contributing to the increasing demand of lithium is the growing use of portable electronic dev
  • March 22, 2012
    Panasonic to supply battery cells for Ford’s hybrid and PHEVs
    Panasonic Corporation has announced that it will supply lithium-ion battery cells for Ford Motor Company's hybrid and plug-in hybrid electricvehicles (PHEVs). The upcoming models of the Ford Fusion Hybrid Electric and C-Max Hybrid Electric as well as the Ford Fusion Energi and C-Max Energi plug-in hybrids will use Panasonic battery cells in combination with a gasoline engine
  • July 29, 2013
    Electric and petrol-powered cars could be price-competitive in 2017
    New projections from US advocacy group the Electric Coalition indicate that the cost of owning an electric car is on its way to becoming competitive with petrol-powered cars. The coalition teamed with professional services firm PricewaterhouseCoopers (PWC) to calculate expected costs of several types of compact cars, pitting battery-electric against internal combustion engines, plug-in hybrids and hybrid vehicles. Including cost of purchase, fuel, maintenance, federal tax credits and residuals, the data sho