Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • Connected Energy and Renault to collaborate on EV charging technology
    February 5, 2016
    Renault and Connected Energy are partnering to develop sustainable and efficient ways of using electric vehicle batteries at the end of their useable in-vehicle life in order to supply innovative and more affordable electric vehicle (EV) charging solutions. At the end of their useful in-vehicle life, Renault EV batteries still have considerable remaining capacity, which means that they can continue to give great service in other applications before they are ultimately recycled. Through its E-STOR te
  • Research project simulates electric vehicles
    November 29, 2013
    A fleet of 130 virtual electric cars is set to appear on the roads of Munich, Germany, where the Technische Universität München (TUM) is to provide participating companies with smartphones that will be installed in taxis and commercial vehicles to track their movements. The phones will record the exact location of the vehicle via GPS, along with driving behaviour such as acceleration, deceleration and turns. The phone’s software will then calculate the energy consumption for a freely configured electric
  • Car emissions campaigners turn sights on Renault
    November 27, 2015
    Renault's flagship Espace minivan released toxic diesel emissions 25 times over legal limits in a Swiss study, despite complying with EU tests carried out at unrealistically low engine temperatures, a German environmental group said this week. According to Reuters, the tests commissioned by the DUH group, which have not been independently verified, follow Volkswagen's admission that it used illegal ‘defeat devices’ to cheat diesel emission regulations. In a statement, Renault said it contested the fin
  • Volocopter says 'ciao' to Italy
    October 10, 2022
    UAM group initiates operations in country's first vertiport at Rome's Leonardo da Vinci Airport