Skip to main content

Connected Energy and Renault to collaborate on EV charging technology

Renault and Connected Energy are partnering to develop sustainable and efficient ways of using electric vehicle batteries at the end of their useable in-vehicle life in order to supply innovative and more affordable electric vehicle (EV) charging solutions. At the end of their useful in-vehicle life, Renault EV batteries still have considerable remaining capacity, which means that they can continue to give great service in other applications before they are ultimately recycled. Through its E-STOR te
February 5, 2016 Read time: 3 mins
Renault and Connected Energy are partnering to develop sustainable and efficient ways of using electric vehicle batteries at the end of their useable in-vehicle life in order to supply innovative and more affordable electric vehicle (EV) charging solutions.

At the end of their useful in-vehicle life, Renault EV batteries still have considerable remaining capacity, which means that they can continue to give great service in other applications before they are ultimately recycled.

Through its E-STOR technology, Connected Energy is offering a highly innovative solution to this conundrum through use of ‘second life’ Renault EV batteries.

E-STOR technology can be used to store energy generated from on-site renewable generation resources such as solar panels and wind turbines, and then release it as it’s needed at a later time. The system also allows the batteries to be charged via low-cost off-peak electricity tariffs, enabling users to reduce their energy costs.

The first E-STOR product is nominally rated at 50kW/50kWhr which could typically be used to support one rapid charger or a cluster of fast chargers but the system is fully scalable and higher capacity units are planned.

In addition to allowing more efficient use of energy, the system can also enable installation of rapid electric vehicle charging at sites where the electricity supply would traditionally only allow slower rates. Instead of charging vehicles via a high-capacity supply directly from the grid, E-STOR allows multiple batteries to be charged at a slower rate over a period of time, ready to release their energy and charge a car when an EV driver needs it.

Matthew Lumsden, managing director, Connected Energy, said: “E-STOR will enable the more cost-effective roll-out of electric vehicles in commercial and industrial settings, thus increasing the overall sustainability of this clean form of transport.    With Renault we have secured the supply of second life batteries for future E-STOR installations.”

Eric Feunteun, electric vehicle program director, Renault, commented: "The second life application of Renault electric vehicle batteries supports Renault’s commitment to the energy transition in the automotive industry. Through E-STOR, EV owners can charge their car at reduced costs with electricity that is less carbon-dependent. It makes driving an EV a smart and even more sustainable transportation solution. With this energy management technology, EVs and their batteries become an asset for the grid rather than create overload.”

Related Content

  • December 3, 2018
    EVs & smart cities: Tritium keeps things moving
    Electric vehicles are widely expected to play a major role in the smarter, cleaner cities of the future. Paul Sernia explains why – and looks at the place of ultra-rapid chargers as part of a versatile public infrastructure Electric vehicles (EVs) are widely expected to play a major role in the smarter, cleaner cities of the future. With no dirty tailpipe, EVs can help improve the polluted air of inner cities. And when deployed as widely shared assets – through car clubs, ride-sharing services and taxi
  • October 15, 2018
    EVgo adds second-life batteries to charging system
    EVgo has added second-life BMW i3 batteries to its Union City fast-charging station in California to help store energy during peak solar hours and reduce strain on the grid. This energy is then used to deliver a fast charge to EVgo customers’ electric vehicles during periods of high demand. The second-life battery system integrates two BMW i3 battery packs into a single housing. Evgo says each battery pack has a capacity of 22kWh which combines with a 30kW inverter to offer a 30kW/44kWh energy storage
  • July 24, 2017
    Boost for EV charging in Canada
    Canada's electric vehicle industry is about to receive a major boost with the announcement of an agreement between eCAMION, based in Toronto, Dallas-based Leclanché North America, part of Switzerland's Leclanché and SGEM based in Geneva, to develop and install a network of 34 fast-charging stations along the Trans-Canada Highway (TCH). The project, designed to encourage the adoption of electric vehicles (EVs) in Canada, is being partially funded Natural Resources Canada (NRCan) under the Canadian Energy Inn
  • October 2, 2018
    Shock therapy: jolt for EV charging needed
    As sales of electric vehicles accelerate, the growth of charging infrastructure is in need of a big boost. Graham Anderson reports on whether Europe is up to it. Utilities, technology companies and vehicle manufacturers are battling to put in place new charging networks for electric vehicles (EVs) across Europe in response to a predicted dramatic surge in demand. Market experts believe that rapidly falling battery costs – which make up about one third of the costs of an electric car – and growing