Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • Intelligent intersection control
    April 12, 2013
    Intelligent intersection control systems have a growing role to play in making urban traffic more efficient. Robin Meczes reports. The idea of every traffic light turning green as you approach it has long been a dream for many an urban driver – and none more so than those driving heavy goods vehicles (HGVs), which are slow and difficult to bring to a halt and then accelerate back to normal travel speed. But that dream has become a reality for some drivers in a small number of cities around Europe in the las
  • ITS green light for two wheels
    January 19, 2023
    Cycling is increasingly promoted as a healthy and sustainable mode of transport. So, ask Ronald Jorna and Robin Kleine of Mobycon, what role should ITS play in stimulating active travel?
  • Gothenburg to implement congestion charging
    February 2, 2012
    Gothenburg, which is line to become Sweden's second major city to implement congestion charging, will not enjoy the pre-deployment trials and referendum which Stockholm did. But, says the STA's Eva Söderberg, this is less of an issue than might be imagined
  • EU project identifies critical road transport infrastructure
    March 21, 2013
    The results of the US3.2 million European Union (EU research project Security of Road Transport Networks (SeRoN) have been published by software and consulting services provider PTV Group and its seven partners. The report presents a methodology which allows planners to identify critical bridges and tunnels and to develop appropriate protection measures. As part of the EU’s 7th Framework Programme, the SeRoN project investigated the security of tunnels and bridges. To this end, the project partners develop