Skip to main content

Student’s graphene battery could cut EV charging times

Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries. Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy
December 8, 2016 Read time: 2 mins
Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries.

Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy and be cheaper, stronger and lighter than existing products. This is because graphene is highly conductive, light and strong and far less would be needed.

Josh, who studies in the University’s School of Engineering and Informatics, is currently on placement with electric-motor company YASA. In the spring, he will begin a six-month work experience tour of some of the major automakers, including 1683 Honda, 7998 Jaguar Land Rover, McLaren, 838 Nissan, Peugeot and 1686 Toyota.

He is also working with the University’s business incubator, Sussex Innovation, to develop a prototype and bring his stacked-graphene battery concept to market.

Related Content

  • February 5, 2016
    Connected Energy and Renault to collaborate on EV charging technology
    Renault and Connected Energy are partnering to develop sustainable and efficient ways of using electric vehicle batteries at the end of their useable in-vehicle life in order to supply innovative and more affordable electric vehicle (EV) charging solutions. At the end of their useful in-vehicle life, Renault EV batteries still have considerable remaining capacity, which means that they can continue to give great service in other applications before they are ultimately recycled. Through its E-STOR te
  • November 7, 2014
    Electric car value chain overturned
    The market for hybrid and pure electric cars homologated as such is set to be US$188 billion in 2025 according to IDTechEx analysis. However, according to Dr Peter Harrop, chairman of IDTechEx, the world has changed for cars overall and now big is not always beautiful for mainstream car manufacture. EVs will reflect this. Although Sergio Marchionne, boss of Fiat Chrysler, famously said six million units a year is needed for a car maker to be profitable, his head of research Pietro Perlo left to successf
  • June 23, 2014
    ITS America, automakers respond to Rubio-Booker 5.9 GHz spectrum legislation
    The Intelligent Transportation Society of America (ITS America) and US automakers have responded to the announcement on legislation introduced by US Senators Marco Rubio and Cory Booker that would set deadlines on the Federal Communications Commission (FCC) for developing and publishing a test plan for the use of unlicensed devices in the 5.9 GHz band. The senators introduced S. 2505, the Wi-Fi Innovation Act, legislation to expand unlicensed spectrum use by requiring the Federal Communications Commissio
  • August 1, 2023
    Transportation’s electrifying future
    Climbing out of our silos will be vital to create the frameworks and networks needed to decarbonise transport, if we are serious about mitigating climate change, says Colin Sowman