Skip to main content

Student’s graphene battery could cut EV charging times

Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries. Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy
December 8, 2016 Read time: 2 mins
Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries.

Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy and be cheaper, stronger and lighter than existing products. This is because graphene is highly conductive, light and strong and far less would be needed.

Josh, who studies in the University’s School of Engineering and Informatics, is currently on placement with electric-motor company YASA. In the spring, he will begin a six-month work experience tour of some of the major automakers, including 1683 Honda, 7998 Jaguar Land Rover, McLaren, 838 Nissan, Peugeot and 1686 Toyota.

He is also working with the University’s business incubator, Sussex Innovation, to develop a prototype and bring his stacked-graphene battery concept to market.

Related Content

  • April 20, 2012
    The afterlife of spent electric vehicle batteries
    Earlier this year, General Motors signed a definitive agreement with ABB Group to identify joint research and development projects that would reuse Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted. Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.
  • June 22, 2012
    Nissan speeding up EV charging infrastructure
    Nissan has teamed up with leading European utility and Electrical Vehicle (EV) supply equipment companies to speed development of cheaper, smaller, quick chargers for EV batteries, and accelerate the installation of publicly available Quick Charge (QC) points right across Europe. This agreement between Nissan, Circutor, DBT, Efacec, Endesa and Siemens is expected to result in a dramatic reduction in the price of the units – by over half to under €10,000 (US$13,668) – paving the way for businesses such as se
  • February 26, 2016
    Traction motors for electric vehicles change radically
    According to Franco Gonzalez, senior technology analyst, IDTechEx, there are about 200 companies making traction motors for electric vehicles, rather like the 200 making the lithium-ion batteries that increasingly power them. However, whereas three types of lithium-ion battery chemistry and construction are taking almost all of the business, with traction motors the situation is much more complex because the diversity of needs calls for many very different types of motor from brushless out-runner motors for
  • January 23, 2020
    Timing is everything for EV charging
    Electric vehicles are often promoted as a more sustainable alternative to diesel and petrol cars - but their arrival raises concerns about the strain which charging will put on the grid.