Skip to main content

Traction motors for electric vehicles change radically

According to Franco Gonzalez, senior technology analyst, IDTechEx, there are about 200 companies making traction motors for electric vehicles, rather like the 200 making the lithium-ion batteries that increasingly power them. However, whereas three types of lithium-ion battery chemistry and construction are taking almost all of the business, with traction motors the situation is much more complex because the diversity of needs calls for many very different types of motor from brushless out-runner motors for
February 26, 2016 Read time: 3 mins
According to Franco Gonzalez, senior technology analyst, 6582 IDTechEx, there are about 200 companies making traction motors for electric vehicles, rather like the 200 making the lithium-ion batteries that increasingly power them. However, whereas three types of lithium-ion battery chemistry and construction are taking almost all of the business, with traction motors the situation is much more complex because the diversity of needs calls for many very different types of motor from brushless out-runner motors for quad-copters to claw pole torque assist reversing alternators (TARA) for the new 48V mild hybrids that will be in volume production from 2017. Those mild hybrids will now qualify as electric vehicles because they will have pure electric silent take-off like regular ‘strong’ hybrids.

While it is true that an increasing number of traction motors for regular electric vehicles also work in reverse to generate electricity from braking and even when coasting, they are very different from TARAs which typically appear as belt-drive starter generators (BSG) and integrated starter generators (ISG) in 48V mild hybrids appearing in volume from 2017.

Mainstream electric vehicle reversing traction motors generate very infrequently whereas the opposite is true for a TARA. Regular hybrids and pure electric vehicles used hundreds of volts in most cases though there are a few that work at 48V including industrial and leisure runabouts and one supercar announced in 2016.  The new IDTechEx Research report, Mild Hybrid 48V Vehicles 2016-2031, looks at the synergies, opportunities and market potential in 48V systems for mild hybrids and, much less important, pure electric vehicles.

Chairman of IDTechEx, Dr Peter Harrop says, “It is important to look at the whole picture to see what is coming in traction motors for EVs. For instance those chasing efficiency and power to weight ratio may watch energy independent electric vehicles (EIV) because they have the most extreme requirements of all in the light-weighting and efficiency arena.

“Newcastle University in the UK is designing such motors for the Boeing drones that will stay up for five years at a time. On the other hand, we recently interviewed Nuon Solar Team, the winner of the Bridgestone trans-Australia 3000 kilometre solar race, and they claim a remarkable 96 per cent efficiency for the motors they design and use. Few regular electric cars even reach 90 per cent. Another solar team in the Netherlands has made a four seat EIV that has so many solar panels it can not only perform its tasks but donate energy to the grid as well and that claims 97 per cent efficiency for its electric motor.”

Related Content

  • April 13, 2017
    Mild hybrid 48V vehicles 2017-2027
    Vehicle emissions regulations for 2025 and 2030 are unlikely to be met by conventional vehicle technology as applied to most vehicles beyond small cars, according to IDTechX researchers. Going to strong hybrid and pure electric powertrains involves considerable expense and delay and often totally new platforms. However, an intermediate technology has reached a stage where it can incrementally improve traditional powertrains by replacing the alternator with a reversible 48 V electric machine and adding a
  • December 19, 2016
    Confusion over electric motors for heavy trucks
    According to Dr Peter Harrop of research company IDTechEx, there is still no agreement on the best type of electric motor to use in heavy trucks. The company’s analysis indicates that the booming, confusing traction motor business will rise to around US$400 billion in 2027. Its new report, Electric Motors for Electric Vehicles 2017-2027 navigates the jargon, the design options and the disagreements. The changing needs and evolving technology are matched to create forecasts and technology timelines based
  • June 24, 2016
    Elimination of electric vehicle systems
    According to IDTechEx Research reports, Power Electronics for Electric Vehicles 2016-2026, Mild Hybrid 48V Vehicles 2016-2031 and Structural Electronics 2015-2025: Applications, Technologies, Forecasts”, el4ctric vehicles (EVs)have a cost challenge: hybrids have complexity problems meaning reliability and space issues. Extra power electronic units arrive for tasks such as a vehicle-to-grid, vehicle-to-house and inductive charging. Many more will be added in future such as regeneration modules - thermoelect
  • December 2, 2016
    Cars reinvented: huge new opportunities and dangers, says IDTechEx
    The new IDTechEx report, Electric Car Technology and Forecasts 2017-2027 finds that the biggest change in cars for one hundred years is now starting. It is driven by totally new requirements and capabilities. They will cause huge new businesses to appear but some giants currently making cars and their parts will spectacularly go bankrupt. Cities will ban private cars but encourage cars as autonomous taxis and rental vehicles. Already 65 per cent of cars in China are bought by businesses. The Japanese wa