Skip to main content

Solid-state batteries– a better, longer-lasting class of Li-ion electrolytes?

In 2016, Li-ion batteries (LIB) have been on the market, virtually unchanged, for the last 25 years. While this anniversary marks and underscores their worldwide success and diffusion in consumer electronics and, more recently, electric vehicles (EV), the underlying technology begins to show its limitations in terms of safety, performance, form factor and cost, according to a new research report by IDTechEx Research.
November 8, 2016 Read time: 3 mins

In 2016, Li-ion batteries (LIB) have been on the market, virtually unchanged, for the last 25 years. While this anniversary marks and underscores their worldwide success and diffusion in consumer electronics and, more recently, electric vehicles (EV), the underlying technology begins to show its limitations in terms of safety, performance, form factor and cost, according to a new research report by 6582 IDTechEx Research.
 
The report, Solid-State and Polymer Batteries 2017-2027: Technology, Markets, Forecasts examines the solid-state electrolyte industry by giving a 10-year forecast through 2027 in terms of numbers of devices sold, capacity production and market size, predicted to reach over US$7 billion by 2027.
 
The first lithium-based solid-state battery was the lithium-iodine battery, where a sheet of lithium metal is placed in contact with solid iodine. These primary batteries were commercialised in the early 70’s to power pacemaker devices, but it wasn’t until a few years ago that sulphide-based materials, belonging to the thio-LISICON family, finally demonstrated that solid-state batteries can be made rechargeable and possibly outperform their liquid counterparts.
 
Recently ARPA-E programme director Paul Albertus announced the US-backed Ionics initiative, a three-pronged roadmap to support R&D on solid-state batteries. With a total investment of US$37 million, Ionics is poised to become the foundry of US-labelled next generation batteries, because solid-state batteries can enable smaller, safer, and better energy storage devices. This can be achieved by leveraging on the remarkable properties of the solid materials that have been developed over the last years, like garnets, thio-LISICONs, and perovskites.
 
Companies like Ford Motor, Toyota, Samsung, and Toshiba are already actively working on solid electrolytes, while many hail the technological achievements of French company Bolloré as an initial step on rechargeable lithium metal polymer batteries. At the same time, consumers demand better, long-lasting batteries that will not catch fire in their hands like the Samsung Galaxy Note 7, and solid-state electrolytes have the potential to solve those issues.
 
These and other factors, including the surge in popularity of electric cars, wearable devices and drones, are pushing the battery industry towards solid-state electrolytes. Solid-state batteries can be made thinner, flexible, and contain more energy per unit weight than conventional Li-ion.
 
The IDTechEx Research report covers both inorganic solid electrolytes and polymer electrolytes, with an analysis of where these two chemistries will most likely find applications. An analysis on thio-LISICONs and the other 7 solid electrolyte chemistries (garnet, halides, perovskites, argyrodites, LiPON, hydrides, NASICON-like) and polymer electrolytes is given. Additionally, comparisons are made between liquid-based Li-ion batteries and solid-based batteries, as well as between thin film and bulk solid-state batteries.

Related Content

  • March 23, 2012
    SK Innovation and Continental team up on worldwide EV power
    SK Innovation and Continental Corporation have announced their intention to team up for powering electric vehicles worldwide. A joint venture is to be formed through which both companies want to develop, manufacture and market Lithium Ion battery systems for automotive applications. SK Innovation and Continental will have 51% and 49% of ownership respectively. The initial JV operations will be based in Germany and Korea; and the management team will be comprised of executives from both companies. The busine
  • February 3, 2012
    Johnson Controls-Saft to supply batteries for China EV platforms
    Johnson Controls-Saft, a specialist in the development and manufacture of advanced lithium-ion batteries for hybrid and electric vehicles, will supply the complete battery system for two electric vehicle platforms, which will be launched by the Beijing Electric Vehicle Company (BEVC), a subsidiary of Beijing Automotive Industry Company (BAIC).
  • May 1, 2012
    Toshiba develops electric-powered bus with short charging time
    Small buses owned by Tokyo's Minato Ward, in Japan, will be retrofitted by with new motors and lithium-ion cells developed by electronics major Toshiba. In fiscal 2013, the Ward aims to start full operations of the electric-powered buses and conduct pilot runs by end-fiscal 2012. The Ward intends to deploy the buses for short journeys in housing locations, as the buses need to be recharged after a trip about 12km in a bid to maintain the battery level higher than 50 per cent. At this level of battery status
  • May 31, 2017
    EVs are creating more and more of their own electricity, say IDTechEx Research
    The latest report from IDTechEx Research, Electric Vehicle Energy Harvesting/Regeneration 2017-2037, explains and forecasts the technologies involved in this key enabling technology. EH/R will be as important and sometimes more important than motors, batteries and power electronics: fabulous opportunities await vehicle, parts and material manufacturers unplugging into this future.