Skip to main content

Ride-sharing could reduce congestion, says US study

A new Massachusetts Institute of Technology (MIT) study suggests that using carpooling options from companies like Uber and Lyft could reduce the number of vehicles on the road by a factor of three without significantly impacting travel time. Led by Professor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), researchers developed an algorithm that found 3,000 four-passenger cars could serve 98 per cent of taxi demand in New York City, with an average wait-tim
January 6, 2017 Read time: 2 mins
A new 2024 Massachusetts Institute of Technology (MIT) study suggests that using carpooling options from companies like Uber and Lyft could reduce the number of vehicles on the road by a factor of three without significantly impacting travel time.

Led by Professor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), researchers developed an algorithm that found 3,000 four-passenger cars could serve 98 per cent of taxi demand in New York City, with an average wait-time of only 2.7 minutes.

The team also found that 95 per cent of demand would be covered by just 2,000 10-person vehicles, compared to the nearly 14,000 taxis that currently operate in New York City.

Using data from 3 million taxi rides, the new algorithm works in real-time to reroute cars based on incoming requests, and can also proactively send idle cars to areas with high demand, a step that speeds up service 20 percent, according to Rus.

“Instead of transporting people one at a time, drivers could transport two to four people at once, resulting in fewer trips, in less time, to make the same amount of money,” says Rus. “A system like this could allow drivers to work shorter shifts, while also creating less traffic, cleaner air, and shorter, less stressful commutes.”

For more information on companies in this article

Related Content

  • Shaking up the taxi market with smarter ride requests
    February 24, 2016
    Timothy Compston looks at the rise of Uber and ride request mobile apps. There is little doubt that the advent of Uber has come as major shock to established taxi operators and has caused regulators, cities and DOTs to rethink current regulations so they can keep pace with the changing dynamics of the marketplace.
  • MIT study combines traffic data for smarter signal timings
    April 1, 2015
    Researchers at Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions. The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Tra
  • Mounting benefits of dynamic tolling project
    January 30, 2012
    Wisconsin's four-year HOT lanes pilot project, launched in May 2008, cost US$18.8 million to construct. Halfway into the project, which uses variably priced, or dynamic, tolling to improve highway efficiency, the benefits are mounting. The problem was obvious, and frustrating, to anyone who ever sat in bumper-to-bumper traffic on State Route 167 and watched a lone car whiz by every 20 seconds or so in the carpool lane. But for planners at the Washington State Department of Transportation, the conundrum was
  • How MaaS and AVs can cut Oslo traffic
    June 17, 2019
    A new study shows that on-demand AVs and MaaS together could make a significant difference to traffic in Oslo, Norway – but only if ride-share is involved too If you replace today’s traditional private car ownership with a mixture of Mobility as a Service (MaaS) and on-demand autonomous vehicles (AVs) running door-to-door, you could make dramatic cuts in city traffic. That, at least, is the view of researchers from COWI and PTV, who have modelled a variety of future scenarios based on the morning rush h