Skip to main content

MIT study combines traffic data for smarter signal timings

Researchers at Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions. The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Tra
April 1, 2015 Read time: 3 mins
Researchers at 2024 Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions.

The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Transportation Science and Transportation Research: Part B.

Osorio says they have developed algorithms that allow major transportation agencies to use high-resolution models of traffic to solve optimisation problems. Typically, such timing determinations are set to optimise travel times along selected major arteries, but are not sophisticated enough to take into account the complex interactions among all streets in a city. In addition, current models do not assess the mix of vehicles on the road at a given time, so they can’t predict how changes in traffic flow may affect overall fuel use and emissions.

For their test case, Osorio and Nanduri used simulations of traffic in the Swiss city of Lausanne, simulating the behaviour of thousands of vehicles per day, each with specific characteristics and activities. The model even accounts for how driving behaviour may change from day to day: For example, changes in signal patterns that make a given route slower may cause people to choose alternative routes on subsequent days.

While existing programs can simulate both city-scale and driver-scale traffic behaviour, integrating the two has been a problem. The MIT team found ways of reducing the amount of detail sufficiently to make the computations practical, while still retaining enough specifics to make useful predictions and recommendations.

“With such complicated models, we had been lacking algorithms to show how to use the models to decide how to change patterns of traffic lights,” Osorio says. “We came up with a solution that would lead to improved travel times across the entire city.” In the case of Lausanne, this entailed modelling 17 key intersections and 12,000 vehicles.

In addition to optimising travel times, the new model incorporates specific information about fuel consumption and emissions for vehicles from motorcycles to buses, reflecting the actual mix seen in the city’s traffic. “The data needs to be very detailed, not just about the vehicle fleet in general, but the fleet at a given time,” Osorio says. “Based on that detailed information, we can come up with traffic plans that produce greater efficiency at the city scale in a way that’s practical for city agencies to use.”
UTC

Related Content

  • July 9, 2014
    Traffic lights: There’s a better way ..
    .. say researchers at Massachusetts Institute of Technology (MIT) who have developed a means of computing optimal timings for city stoplights that they say can significantly reduce drivers’ average travel times. Existing software for timing traffic signals has several limitations, says Carolina Osorio, an assistant professor of civil and environmental engineering at MIT and lead author of a forthcoming paper in the journal Transportation Science that describes the new system, based on a study of traffic
  • June 23, 2020
    Here: AI has place in ‘privacy by design’
    Artificial intelligence may improve traffic in cities and keep location data private, but Here Technologies shows that it only takes four points of anonymous data to predict your identity.
  • March 8, 2023
    Aimsun solutions support new planning tool for low-carbon mobility
    The EU-funded HARMONY research project is behind a new planning tool to support sustainable transport policymaking. Aimsun scientific researcher Lampros Yfantis explains the key role of traffic simulation with Aimsun Ride in planning for on-demand mobility and logistics services
  • February 9, 2017
    PTV sets its sights on Smart City solutions
    Making a city smarter not only relies on understand technological opportunities but also human decision-making, as Miller Crockart explains. Cities are about people – a fact that can easily be forgotten when experts talk about roads, healthcare and education as though they are abstract and unconnected monoliths rather than things people use. Understanding how and why people use services is vital for making decisions on how they can be optimised for maximum efficiency across inter-connected networks that for