Skip to main content

Nissan’s new analysis method may boost driving range of EVs

Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo
May 16, 2016 Read time: 2 mins
838 Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs).

The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technology Agency (JST).

The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations. The new findings indicate that its structure allows the storage of a larger number of Li-ions, in turn leading to better battery performance.

Related Content

  • July 7, 2016
    Inrix launches traffic data analysis via the cloud
    A new portfolio of road performance and analytical visualisation tools just launched by Inrix, the Inrix Roadway Analytics, is a set of on-demand tools available in Europe and the Middle East that, providing transport agencies with quick and easy access to in-depth roadway analysis and visualisations. Inrix Roadway Analytics also allows users to create reports and other communication materials to convey important information and recommendations to drivers, decision makers and the general public. Built on
  • April 18, 2012
    EV charging will require increased investment in cyber security systems
    The technology architecture associated with electric vehicle (EV) charging is continuing to evolve as utilities and other key players in the industry ecosystem identify business requirements and risks associated with adding significant new demands on the electrical grid. One of the most pressing challenges is related to securing financial transactions and end-to-end communications throughout the EV charging infrastructure, and a recent report from Pike Research indicates that these areas will be the focus o
  • February 2, 2023
    Swarco's next generation shines
    Road safety and sustainability are keys to production of SolidPlus reflective beads, firm says
  • December 18, 2015
    Profitable niches in the electric vehicles market
    Vehicles are electrifying at a breakneck speed and they are being completely reinvented with developments in many components and systems, according to a report by IDTechEx Research. Disruptive change and significant technological innovation is now being seen across all forms of electric vehicles for land, water and air. The fruits of all this are spectacular – from the vehicles themselves to over US$500 billion market opportunity that will be created by 2026. IDTechEx Research analyses and forecasts eve