Skip to main content

Nissan’s new analysis method may boost driving range of EVs

Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo
May 16, 2016 Read time: 2 mins
838 Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs).

The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technology Agency (JST).

The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations. The new findings indicate that its structure allows the storage of a larger number of Li-ions, in turn leading to better battery performance.

Related Content

  • January 20, 2017
    Automotive software developers call on hackers to find its flaws
    A consortium of US researchers has announced the development of a universal, free, and open-source framework to protect wireless software updates in vehicles. The team issued a challenge to security experts everywhere to try to find vulnerabilities before it is adopted by the automotive industry. The new solution, called Uptane, evolves the widely used TUF (The Update Framework), developed by NYU Tandon School of Engineering Assistant Professor of Computer Science and Engineering Justin Cappos to secure
  • June 24, 2021
    Top 5 trends in vision technology
    Artificial intelligence and deep learning algorithms are among the major trends having an impact on road traffic enforcement, according to leading companies in the vision sector
  • October 11, 2013
    Full electric vehicle shipments to exceed 2 million by 2020
    According to ABI Research, the number of full electric vehicles (EV) shipping yearly will increase from 150,000 in 2013 to 2.36 million in 2020, representing a CAGR of 48 per cent. Asia-Pacific will exhibit the strongest growth, driven by mounting pollution issues in its many megacities; however, true mass-market uptake will only start happening in the next decade.
  • November 23, 2017
    Spark EV launches telematics solution to remove range anxiety for EV fleet operators

    Spark EV has launched its new artificial intelligence-based journey prediction telematics solution in Cambridge UK to reassure fleet managers moving to electric vehicles (EVs) that they will be able to schedule and complete jobs without running out of charge. It is designed with the intention of reducing range anxiety for managers and increasing the number of potential journeys by 2.8 per day.