Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • MIT study combines traffic data for smarter signal timings
    April 1, 2015
    Researchers at Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions. The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Tra
  • GE and EV World collaborate on electric vehicle technology
    October 15, 2012
    General Electric (GE) has announced a partnership with Singapore-based electric vehicle research centre EV World to collaborate on technology development and strategic initiatives to support the roll out of electric vehicles (EV) in Malaysia and Singapore. The companies said the collaboration would lead to a research and development centre of excellence for EV technology. “It will also allow both parties to work hand-in-hand to bring to market commercial applications for EVs to Malaysia and Singapore,” they
  • Investment and innovation the future of ITS
    January 31, 2012
    Cisco's Paul Brubaker, former administrator of the US Department of Transportation's (USDOT's) Research and Innovative Technology Administration (RITA), takes a look at how the ITS sector is starting to attract the attention of major corporations and what this will mean for intelligent transportation in the coming years
  • Electric car value chain overturned
    November 7, 2014
    The market for hybrid and pure electric cars homologated as such is set to be US$188 billion in 2025 according to IDTechEx analysis. However, according to Dr Peter Harrop, chairman of IDTechEx, the world has changed for cars overall and now big is not always beautiful for mainstream car manufacture. EVs will reflect this. Although Sergio Marchionne, boss of Fiat Chrysler, famously said six million units a year is needed for a car maker to be profitable, his head of research Pietro Perlo left to successf