Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Running on empty
    May 2, 2018
    Drivers are an increasingly rare species on Europe’s commuter metros as unattended train operation is embraced. David Crawford takes a low-speed tour of the continent’s capitals to see what’s happening. Unattended train operation (UTO) is fast becoming the norm for Europe’s metros, on existing as well as new lines. November 2017 statistics published by the International Association of Public Transport (UITP) show the continent as having 28% of the global total of route km on lines operating at the ultimate
  • Smart parking technologies: solving drivers parking pain
    March 30, 2017
    Smarter parking can benefit city authorities and other road users as well as drivers looking for a space, argues Dr Graham Cookson. As witnessed by the recent announcements at the Consumer Electronics Show, the automotive industry continues to focus on the driving experience; moving from speed and handling towards safety and efficiency.
  • Ford rolls out new driver assist system
    October 24, 2014
    Ford Motor Company is rolling out a new driver-assist system that can reduce the severity of or even eliminate some frontal collisions involving vehicles and pedestrians. Pre-collision assist with pedestrian detection will debut as available technology on the 2015 Ford Mondeo on sale in Europe this year. It will then roll out to other Ford and Lincoln products around the world.
  • Traveller experience study identifies key themes for improving transport network
    October 14, 2015
    The UK’s Transport Systems Catapult has identified key areas of development in the transport network in its traveller experience study, Traveller Needs, which comprised of 10,000 online questionnaire respondents, 50 company interviews, and 100 expert interviews. The research found that 75 per cent of journeys are characterised by pain-points, with 57 per cent of travellers always looking for ways to optimise their journey. Public transport is considered to be poor value for money with the ‘high cost