Skip to main content

Battery vehicle ‘now viable for very long distances’

The Tesla 3 gets nearly double the range of the Nissan Leaf by using nearly double the amount of battery but engineers are using a multitude of work rounds to do better: aerodynamics, light-weighting even including structural electronics where dumb structure is replaced by supercapacitors or solid state batteries. Add more efficient motors and powertrain, says Dr Peter Harrop, chairman of IDTechEx Research in its report Industrial and Commercial Electric Vehicles on Land 2016-2026. He goes on to say that
June 23, 2016 Read time: 2 mins
The Tesla 3 gets nearly double the range of the 838 Nissan Leaf by using nearly double the amount of battery but engineers are using a multitude of work rounds to do better: aerodynamics, light-weighting even including structural electronics where dumb structure is replaced by supercapacitors or solid state batteries. Add more efficient motors and powertrain, says Dr Peter Harrop, chairman of 6582 IDTechEx Research in its report Industrial and Commercial Electric Vehicles on Land 2016-2026.

He goes on to say that fuel cell hybrids retain the cachet of most expensive solution with a long on-road charging time if you factor in the time to find that rarity, the hydrogen charger. Very long distance with large hydrogen tanks is impracticable.

However, IDTechEx believes that there is an excellent solution being proved for the long distance battery vehicle, starting with trucks. The battery does not expand to an unwieldy 400kWh.

A new dynamic charging approach was presented at EVS29 Canada by Patrik Akerman of 189 Siemens. Dynamic charging is a term most often applied to coils in the road that charge the vehicle as it goes along but, as he pointed out, this has severe difficulties with roads wearing out early, safety and damage from vehicles and roadworks. Height variations, snow, dirt, cost and other problems have been cited by others. Following a study, Siemens has decided not to work on this. Akerman favours the elegant, affordable solution of intermittent overhead catenary at a mere Euros 2.2 million per kilometre for charging trucks on the move which means that they can still overtake (the old trolley buses could not).

The whole of Germany could be served in this way with only 400 km of catenary. The German authorities find it feasible and desirable. There are trials now in several other countries. Cost is a fraction of fuel cell and other alternatives: installation is easy. IDTechEx finds that inductive charging is great for the car at home and premium cars are adopting it.

IDTechEx believes that fuel cell vehicles will succeed in niche markets when attractive unique selling propositions are identified.

For more information on companies in this article

Related Content

  • Ukraine invests in Kistler WiM
    June 24, 2021
    Eastern European nation will use Kistler WiM stations to tackle overloaded trucks
  • 26% of UK respondents expect to buy an alternative fuelled car by 2024
    March 5, 2018
    26% of 2,000 UK car buyers are expecting to purchase an electric or hybrid vehicle within six years, 45% of which cited that electric is better for the environment, according to a study conducted by Motorway.co.uk. The inquiry showed that 11% are planning on selecting an electric car while 15% are prepared to choose a hybrid model. Additionally, 34% said they would transition to electric as they believe these vehicles are cheaper to run, 28% stated that the more advanced technology attracted them, while
  • Connected Energy and Renault to collaborate on EV charging technology
    February 5, 2016
    Renault and Connected Energy are partnering to develop sustainable and efficient ways of using electric vehicle batteries at the end of their useable in-vehicle life in order to supply innovative and more affordable electric vehicle (EV) charging solutions. At the end of their useful in-vehicle life, Renault EV batteries still have considerable remaining capacity, which means that they can continue to give great service in other applications before they are ultimately recycled. Through its E-STOR te
  • Report identifies opportunities for road freight carbon and cost reduction
    December 4, 2012
    Switching from diesel to gas, reducing rolling resistance and aerodynamic drag and introducing more hybrid and electric vehicles are identified as key opportunities for further cutting carbon and improving efficiency in the road freight sector, according to a new report commissioned by the Transport Knowledge Transfer Network (TKTN) and the Low Carbon Vehicle Partnership (LowCVP). The report, written by Ricardo-AEA for the project partners, focuses on the key technical opportunities, and identifies options