Skip to main content

The afterlife of spent electric vehicle batteries

Earlier this year, General Motors signed a definitive agreement with ABB Group to identify joint research and development projects that would reuse Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted. Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.
April 20, 2012 Read time: 2 mins
Earlier this year, 948 General Motors signed a definitive agreement with 4540 ABB Group to identify joint research and development projects that would reuse 1960 Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted.

Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.

This week, GM and ABB demonstrated an energy storage system that combines a proven electric vehicle battery technology and a proven grid-tied electric power inverter. The two companies are building a prototype that could lead to Volt battery packs storing energy, including renewable wind and solar energy, and feeding it back to the grid.

They say the system could store electricity from the grid during times of low usage to be used during periods of peak demand, saving customers and utilities money. The battery packs could also be used as back-up power sources during outages and brownouts.
Using Volt battery cells, the ABB and GM team is building a prototype system for 25-kilowatt/50-kWh applications, about the same power consumption of five US homes or small retail and industrial facilities.

ABB has determined its existing power quality filter (PQF) inverter can be used to charge and discharge the Volt battery pack to take full advantage of the system and enable utilities to reduce the cost of peak load conditions. The system can also reduce utilities' needs for power control, protection and additional monitoring equipment. The team will soon test the system for back-up power applications.

"Our tests so far have shown the viability of the GM-ABB solution in the laboratory and they have provided valuable experience to overcome the technical challenges," said Pablo Rosenfeld, ABB's programme manager for Distributed Energy Storage Medium Voltage Power Products. "We are making plans now for the next major step – testing a larger prototype on an actual electric distribution system,"  he said.

For more information on companies in this article

Related Content

  • Confusion over electric motors for heavy trucks
    December 19, 2016
    According to Dr Peter Harrop of research company IDTechEx, there is still no agreement on the best type of electric motor to use in heavy trucks. The company’s analysis indicates that the booming, confusing traction motor business will rise to around US$400 billion in 2027. Its new report, Electric Motors for Electric Vehicles 2017-2027 navigates the jargon, the design options and the disagreements. The changing needs and evolving technology are matched to create forecasts and technology timelines based
  • Weathering the elements: how weather affects the network
    July 29, 2013
    Weather-related problems can render cost-cutting counter productive, according to CommScope’s Philip Sorrells. When severe weather conditions make headlines every winter, motorists and travellers seem willing to accept the impact on the trains and roads and yet take for granted that the communications networks will continue uninterrupted. They often appear far more upset that the information system does not give them an update on road conditions, train services or bus arrival times than they are about the a
  • World Congress celebrates coming of age in Detroit
    September 7, 2014
    This is the 21st ITS World Congress and as Scott Belcher, President and CEO of ITS America, puts the event in its wider context, it’s clear that ITS has come of age
  • TriMet and PGE use wind to power e-buses in Portland
    April 25, 2019
    Authorities in Oregon, US, are embracing wind power as a means of meeting transport emissions commitments. TriMet (Tri-County Metropolitan Transportation District of Oregon) has joined forces with Portland General Electric (PGE) to power its all-electric buses with wind energy. TriMet says the move supports its ambition to run a non-diesel fleet by 2040. Maria Pope, PGE president, says: "This all-electric bus line is a sustainable transportation option for the community and another step closer to a cle