Skip to main content

The afterlife of spent electric vehicle batteries

Earlier this year, General Motors signed a definitive agreement with ABB Group to identify joint research and development projects that would reuse Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted. Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.
April 20, 2012 Read time: 2 mins
Earlier this year, 948 General Motors signed a definitive agreement with 4540 ABB Group to identify joint research and development projects that would reuse 1960 Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted.

Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.

This week, GM and ABB demonstrated an energy storage system that combines a proven electric vehicle battery technology and a proven grid-tied electric power inverter. The two companies are building a prototype that could lead to Volt battery packs storing energy, including renewable wind and solar energy, and feeding it back to the grid.

They say the system could store electricity from the grid during times of low usage to be used during periods of peak demand, saving customers and utilities money. The battery packs could also be used as back-up power sources during outages and brownouts.
Using Volt battery cells, the ABB and GM team is building a prototype system for 25-kilowatt/50-kWh applications, about the same power consumption of five US homes or small retail and industrial facilities.

ABB has determined its existing power quality filter (PQF) inverter can be used to charge and discharge the Volt battery pack to take full advantage of the system and enable utilities to reduce the cost of peak load conditions. The system can also reduce utilities' needs for power control, protection and additional monitoring equipment. The team will soon test the system for back-up power applications.

"Our tests so far have shown the viability of the GM-ABB solution in the laboratory and they have provided valuable experience to overcome the technical challenges," said Pablo Rosenfeld, ABB's programme manager for Distributed Energy Storage Medium Voltage Power Products. "We are making plans now for the next major step – testing a larger prototype on an actual electric distribution system,"  he said.

For more information on companies in this article

Related Content

  • TRA 2018: Vienna conference highlights
    June 5, 2018
    Digitalisation of transport systems, the regulation of new technologies and more charging points for electric vehicles in cities were among the talking points at this year’s Transport Research Arena conference. Alan Dron sifts through the highlights in Vienna. More than 3,000 transport sector specialists converged on TRA 2018, where the four-day event’s agenda included scores of topics covering regulation, technology and the effect of the digitalisation of road transport systems. Who should control those
  • Kyocera and BYD to develop integrated energy system for EVs
    June 21, 2019
    Japanese manufacturer Kyocera has joined forces with BYD (Build Your Dreams) to develop an integrated renewable supply-demand energy system for electric vehicles (EVs). Kyocera will combine its solar power generating systems with BYD’s electric buses in a bid to reduce power losses and maintain a stable supply-demand energy balance. For the project, Kyocera is to develop the energy and charge management system to control the supply-demand balance between energy production and consumption by using ag
  • Successful Bio-DME field tests point to a cleaner transport system
    June 4, 2012
    Volvo Trucks has announced it is running successful field tests with vehicles powered by bio-DME, a fuel that can be produced cost- and energy-efficiently from biomass. Since last autumn, ten specially adapted Volvo trucks have been operating on Swedish roads using the fuel which reduces carbon emissions by 95 per cent compared with conventional diesel. The field tests have now reached the halfway point and the results so far have both met, and exceeded, expectations.
  • Inland waterways can de-stress city roads
    March 17, 2016
    David Crawford looks at an under-utilised solution for city-centre deliveries. The use of rivers and canals for moving freight is a well-established mode in North Western Europe, where it can take advantage of an intensively developed network. In the Netherlands, 40% of the total volume of goods transported internally goes by water; the figure for Flanders (the neighbouring Dutch-speaking region of Belgium) is 11.5%.