Skip to main content

Road markings can be 'microplastics risk' - new report

Sweden’s VTI and Chalmers University of Technology have catalogued the available literature
By David Arminas May 26, 2020 Read time: 2 mins
Here, there and everywhere: even road markings give off microplastics that get into the ecosystem (© David Arminas)

Researchers from the Swedish National Road and Transport Research Institute (VTI) and Gothenburg-based Chalmers University of Technology have published a report on the literature concerning microplastics.

Tyre and road surface wear generates significant emissions of microplastic particles, which are linked to environmental damage such as corruption of the food chain.

However, knowledge about them is very limited, according to the authors of the report, Microplastics from tyre and road wear: a review of the literature.

Despite research, there is a lack of understanding about parameters such as how particles are dispersed, levels at which they occur in environments, how quickly they degrade and how best to sample and analyse them.

Although these microplastic particles are largely the result of tyre wear, they can also be traced to worn road markings and surfaces containing polymer modified bitumen – PMBs.

It is estimated that at least half of Sweden’s total emissions of microplastics come from tyre wear, notes the report.

Studies have shown that microplastics are present in watercourses and water treatment works, in soil, plants, food and drink, organisms and even humans.

Microplastics specifically traceable to road traffic have been found in road dust, waterways, surface water and sediments in areas including the Swedish west coast.

“We know that emissions of microparticles from tyre wear are very large, that they are likely to degrade extremely slowly in nature and that they contain substances hazardous to living organisms,” said Mikael Johannesson, research director at VTI.

“We, therefore, have every reason to limit both the generation and dispersal of tyre wear particles.”

The researchers have also compiled knowledge on possible measures to reduce both the generation and dispersal of microplastic particles.

Measures that can lower the generation of microplastics include lower speeds, limited vehicle mileage, reduced use of studded tyres, calmer driving behaviour, a transition to lighter vehicles and optimised wheel balancing.

A number of these measures also bring other benefits, such as reduced emissions of air pollutants and greenhouse gases, lower noise levels, fewer serious traffic accidents and reduced road maintenance.

Measures that reduce the dispersal of microplastics include street cleaning and various types of plant to treat road surface water.

The 146-page report is available as a free download.

For more information on companies in this article

Related Content

  • Dynniq tests virtual tool for air quality evaluation and monitoring
    June 23, 2016
    An air quality evaluation system that utilises existing data has been modelled on the UK’s motorways and tested in Manchester as Peter Kirby and Paul Grayston describe. It has long been known that emissions from road transport are the principal source of NO2 pollution, especially in the urban environment, and that appropriate transport management can play a big role in meeting environment and public health objectives.
  • Barrier-free truck tolling for Spain's Basque region
    October 11, 2024
    MLFF system covers 146 lanes and has been processing 1.4 million transactions daily
  • Volvo Trucks increases uptime with wireless connection
    July 18, 2012
    Volvo Trucks has developed a new GSM-based system that allows workshops to check a trucks’ condition remotely – a development that promises increased uptime and lower maintenance costs. The system is scheduled for release in Europe in 2013. The new remote services are possible thanks to the latest version of in-truck Telematics Gateway (TGW). This allows the Volvo workshop to monitor the vehicle's wear and condition in addition to reading fault codes remotely, using the GSM network.
  • MIT study combines traffic data for smarter signal timings
    April 1, 2015
    Researchers at Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions. The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Tra