Skip to main content

Reducing high levels of particles in tunnels

A new study from Sweden’s National Road and Transport Research Institute (VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.
March 1, 2017 Read time: 2 mins

A new study from Sweden’s National Road and Transport Research Institute (5230 VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.

The tests were carried out in Sweden at Arlanda Central station beneath Arlanda Airport and in the Söderleden road tunnel in central Stockholm. The results indicate that the environment of the studied railroad tunnel is characterised by peaks in coarse particle concentration. Some trains can be tied to emissions of ultrafine particles which consist mainly of iron, with lesser amounts of copper, zinc and other metals.

The main focus of measures to remedy high particle counts in railway tunnels has so far been on preventing exposure by separating trains from platforms or using ventilation to remove polluted air, but few studies have examined the means available to prevent the emissions themselves.

According to VTI researcher Mats Gustafsson, the study demonstrates that it is possible to reduce particulate emissions by identifying and improving train types as well as individual trains and their characteristics.

Road tunnels are characterised by high levels of ultrafine particles and high levels of coarse particles when conditions are dry. Because the traffic in such tunnels is more intense than in railroad tunnels, the particle levels are more consistently high during rush hours.

“The options available to combat coarse particles in road tunnels comprise reduced studded tyre use, better paving, and efficient dust binding and cleaning”, said Gustafsson.

The ultrafine particles that occur in high concentrations derive from vehicle exhaust and can be addressed by reducing traffic volumes, improving exhaust treatment, and lowering the proportion of heavy traffic, he says.

Related Content

  • September 19, 2014
    Public transport key to climate change, says report
    A new report, released in advance of United Nations Secretary-General’s Climate Summit on 23 September, claims that more than US$100 trillion in cumulative public and private spending could be saved and 1,700 megatons of annual carbon dioxide (CO2) - a 40 percent reduction of urban passenger transport emissions - could be eliminated by 2050 if the world expands public transportation, walking and cycling in cities. The report, A Global High Shift Scenario, from the Institute for Transportation Development
  • February 3, 2012
    Reducing detection costs benefits intersection management
    The continuing, favourable performance-versus-cost situation concerning detection and monitoring technologies is driving the proliferation of intelligence across road networks. The effective and safe management of intersections is a focus for network operators and systems manufacturers alike. The most complicated of road environments, and statistically among the least safe, intersections enjoy particular emphasis in longer-term work on cooperative infrastructure solutions. However there are current developm
  • November 2, 2015
    Government incentives ‘vital to help OEMs tackle costs for gasoline particulate filters’
    According to the latest analysis from Frost & Sullivan, the competitive, growing gasoline particulate filters (GPFs) market in Europe and North America presents suppliers and original equipment manufacturers (OEMs) with diverse opportunities as well as challenges. The inclusion of particulate number regulation within emission norms will accelerate the adoption of GPFs. However, government incentives will be vital to help OEMs tackle the rising costs of GPF installations. The analysis, Analysis of the GP
  • January 26, 2012
    What's next for traffic management and data collection?
    As the technologies and stakeholders in traffic management evolve, what can we expect to see happening in the coming years? For many, the conversation of the moment is just how, and how far, the newer technologies and services provided principally by the private sector should be allowed to intrude into the realms of traffic management.