Skip to main content

Reducing high levels of particles in tunnels

A new study from Sweden’s National Road and Transport Research Institute (VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.
March 1, 2017 Read time: 2 mins

A new study from Sweden’s National Road and Transport Research Institute (5230 VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.

The tests were carried out in Sweden at Arlanda Central station beneath Arlanda Airport and in the Söderleden road tunnel in central Stockholm. The results indicate that the environment of the studied railroad tunnel is characterised by peaks in coarse particle concentration. Some trains can be tied to emissions of ultrafine particles which consist mainly of iron, with lesser amounts of copper, zinc and other metals.

The main focus of measures to remedy high particle counts in railway tunnels has so far been on preventing exposure by separating trains from platforms or using ventilation to remove polluted air, but few studies have examined the means available to prevent the emissions themselves.

According to VTI researcher Mats Gustafsson, the study demonstrates that it is possible to reduce particulate emissions by identifying and improving train types as well as individual trains and their characteristics.

Road tunnels are characterised by high levels of ultrafine particles and high levels of coarse particles when conditions are dry. Because the traffic in such tunnels is more intense than in railroad tunnels, the particle levels are more consistently high during rush hours.

“The options available to combat coarse particles in road tunnels comprise reduced studded tyre use, better paving, and efficient dust binding and cleaning”, said Gustafsson.

The ultrafine particles that occur in high concentrations derive from vehicle exhaust and can be addressed by reducing traffic volumes, improving exhaust treatment, and lowering the proportion of heavy traffic, he says.

For more information on companies in this article

Related Content

  • Government incentives ‘vital to help OEMs tackle costs for gasoline particulate filters’
    November 2, 2015
    According to the latest analysis from Frost & Sullivan, the competitive, growing gasoline particulate filters (GPFs) market in Europe and North America presents suppliers and original equipment manufacturers (OEMs) with diverse opportunities as well as challenges. The inclusion of particulate number regulation within emission norms will accelerate the adoption of GPFs. However, government incentives will be vital to help OEMs tackle the rising costs of GPF installations. The analysis, Analysis of the GP
  • VRU safety report urges enforcement
    March 18, 2020
    Enforcement must be at the heart of a drive to reduce vulnerable road user deaths and injuries, says the latest report from the European Transport Safety Council. Its facts and figures give authorities the justification to invest more in camera technology and other ITS solutions
  • Bloomberg forms clean air partnership
    November 4, 2020
    Data collected from projects will inform policies implemented by the Brussels government 
  • Covid-19 cleared the air: ITS can keep it clean
    July 31, 2020
    Covid-19 has created cleaner air: ITS can help keep it that way – but it’s not going to be straightforward, as Graham Anderson discovers