Skip to main content

Swarco delivers traffic control to University of Cambridge

Swarco’s traffic control technology has been chosen by construction company SDC to regulate heavy vehicle and plant traffic movements over a two-year building project at the University of Cambridge’s Civil Engineering department. Called ITC-3, the solution is designed for a range of traffic management applications and can be connected to a variety of control and monitoring systems. The ITC-3 can be delivered for pedestrian control and small intersections, as a version with six phases and up to 16
December 6, 2017 Read time: 2 mins

129 Swarco’s traffic control technology has been chosen by construction company SDC to regulate heavy vehicle and plant traffic movements over a two-year building project at the University of Cambridge’s Civil Engineering department.

Called ITC-3, the solution is designed for a range of traffic management applications and can be connected to a variety of control and monitoring systems.

The ITC-3 can be delivered for pedestrian control and small intersections, as a version with six phases and up to 16 detectors. For most intersections, the 3U rack comes with up to 24 phases and 40 detectors. Versions with 32 phases and up to 128 detectors can be configured for complex applications or to cover more than one intersection.

Mark Hickmott of Swarco Traffic, said: “SDC now has a highly reliable and bespoke system which can deal with every eventuality. The life costs of this system are substantially lower than temporary traffic signals.”

UTC

Related Content

  • June 20, 2012
    Study shows road markings deliver cost-effective road safety
    Road markings are among the most cost-effective solutions to make roads safer. A recent study carried out for the American Glass Bead Manufacturer’s Association quantifies by just how much Despite only making up 23% of the US mileage, fatalities on America’s rural two-lane highways made up 57% of all traffic fatalities in 2009 — resulting in more than $77Bn in losses for that year alone. Moreover, a rural motorist is 2.7 times more likely to be involved in a fatal crash per mile travelled than their urban
  • June 6, 2012
    New York’s Midtown in Motion traffic management system wins ITS America award
    ITS America has recognised the New York City Department of Transportation (NYC DoT) for Midtown in Motion, the sophisticated traffic management system launched last July that uses ITS to ease traffic congestion, improve traffic flow, and reduce greenhouse emissions and air pollution on the city’s most congested streets. Coinciding with the award, NYC DoT announced that it is expanding the system, which currently covers 110-square blocks, to cover 270-square blocks in the city’s most heavily congested neighb
  • April 23, 2013
    Challenges and benefits of adaptive signal control
    Delcan’s Joe Lam, who managed the first computerised signal system in the world, provides an expert insight into adaptive signal control. There are no gadgets in the world that regulate our daily behaviour as much as traffic signals, except perhaps our mobile phones. It has been estimated that the daily commuter goes through at least 10 signals on his journey to work. However, unlike mobile phones, traffic signals cannot be ignored or switched off by their daily users, at least not without legal consequence
  • March 21, 2022
    The benefits of Lidar

    While Lidar is gaining ground in the ITS industry, it has not yet reached the level of mass adoption where it shows up frequently in requests for proposals (RFPs) from cities and DoTs.