Skip to main content

Georgia gets SCOOT

Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years. The project is being managed by Siemens USA with local dealer Temple.
May 9, 2013 Read time: 2 mins
189 Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years.

The project is being managed by 121 Siemens USA with local dealer 580 Temple.

Following testing of a demonstration system by 754 Georgia Department of Transportation which highlighted the benefits of adaptive control and after comparison with a leading system, it was determined that SCOOT would be an excellent long term solution.

Further analysis by 831 Federal Highway Administration (FHWA), concluded that, of SCOOT’s many desirable features, the one of particular importance was the ability to run the system with ordinary traffic plans but to also have the capability to invoke SCOOT when desired.  

It was determined that with the Siemens configuration, the clients could continue to run standard traffic patterns using the Siemens TACTICS traffic management system.  However, when requested, the SCOOT system can activate a full adaptive system which can be turned on and off by the SCOOT system scheduler.

Roadside implementation has already begun and the full SCOOT implementation is expected to be completed by the end of the summer.

A tender has also been released to expand the system with an additional thirty-four intersections before the initial deployment has been completed.  The initial deployment will be for 33 intersections.

Related Content

  • TfL expands SCOOT adaptive traffic management
    January 14, 2013
    Microsimulation traffic modelling has supported a further roll-out of SCOOT adaptive traffic signal control in London, demonstrating a 13% reduction in travel delays. Development of a cost-effective traffic modelling system has led to a further major roll-out of SCOOT adaptive traffic management technology in London, says traffic and software programme director Gavin Jackman of UK transport consultancy TRL. The roll-out of SCOOT at 600 additional intersections, now at its midpoint, is a central plank in the
  • TfL expands SCOOT adaptive traffic management
    January 11, 2013
    Microsimulation traffic modelling has supported a further roll-out of SCOOT adaptive traffic signal control in London, demonstrating a 13% reduction in travel delays. Development of a cost-effective traffic modelling system has led to a further major roll-out of SCOOT adaptive traffic management technology in London, says traffic and software programme director Gavin Jackman of UK transport consultancy TRL. The roll-out of SCOOT at 600 additional intersections, now at its midpoint, is a central plank in the
  • TfL expands SCOOT adaptive traffic management
    January 11, 2013
    Microsimulation traffic modelling has supported a further roll-out of SCOOT adaptive traffic signal control in London, demonstrating a 13% reduction in travel delays. Development of a cost-effective traffic modelling system has led to a further major roll-out of SCOOT adaptive traffic management technology in London, says traffic and software programme director Gavin Jackman of UK transport consultancy TRL. The roll-out of SCOOT at 600 additional intersections, now at its midpoint, is a central plank in the
  • Transmax trials emergency vehicle ‘green wave’
    December 6, 2013
    Existing equipment used in Australian emergency vehicle ‘green wave’ trial. Despite the lights and sirens, accidents between the motoring public and emergency vehicles on their way to/from the scene of an incident are relatively frequent. Figures from various sources indicate that road accidents are the second most frequent cause of death for on-duty fire fighter fatalities and that more than 90% of ambulance and fire engine accidents occur when the lights are on and the sirens wailing. Other studies indica