Skip to main content

City of Seattle implements SCOOT adaptive traffic management

Seattle Department of Transportation (SDOT) has implemented a new adaptive traffic control system at 32 intersections along Mercer Street between 3rd Ave W and I-5, which has been one of the city’s most congested corridors for over 40 years. Developed by the UK’s Transport Research Laboratory, the SCOOT (Split Cycle Offset Optimisation Technique) system coordinates the operation of the traffic signals in and around the corridor to help vehicles move more efficiently. SCOOT works in real-time to reduce delay
May 2, 2017 Read time: 2 mins
Seattle Department of Transportation (SDOT) has implemented a new adaptive traffic control system at 32 intersections along Mercer Street between 3rd Ave W and I-5, which has been one of the city’s most congested corridors for over 40 years.


Developed by the UK’s Transport Research Laboratory, the SCOOT (Split Cycle Offset Optimisation Technique) system coordinates the operation of the traffic signals in and around the corridor to help vehicles move more efficiently.

SCOOT works in real-time to reduce delays and adapt to changing traffic volumes, such as congestion caused by nearby sport or concert events. The system detects cars in each lane at every intersection. It determines traffic levels, predicts the flow of traffic and adjusts the amount of time available to each movement through the intersection. The result is more effective and responsive signal operations. SCOOT provides significant benefits:

• Quicker, more reliable travel times through the network
• Enhanced transit operations
• Reduced overall emissions and fuel consumption
• Effective management of traffic fluctuations due to special events

To assess the how well SCOOT is working, vehicle data is being collected daily and compared to historical averages. Reporting periods include the three-hour morning and evening peak travel times in both the eastbound and westbound directions during the five-day working week. From the data received to date, drivers travelling east during peak times are experiencing a six per cent increase in morning travel time reliability and 38 per cent in the evenings.

“This new system will adjust signal timing based on traffic in and around Mercer in real time. We know Mercer is the busiest corridor in the city,” said SDOT Director Scott Kubly. “SCOOT will help reduce the traffic backups we’ve seen along Mercer and help keep people moving.”

Related Content

  • Are truck bans the wrong move in the battle for air quality
    June 29, 2016
    Low emission zones and heavy goods vehicles’ access to city centres may at first glance appear attractive but how effective are such controls? Jon Masters reviews emerging trends across Europe. Around 1,700 European cities have implemented low emission zones (LEZs) and in addition some have restricted city centre access for heavy goods vehicles (HGVs). Even those that restrict HGV access, such as Paris and Rome, allow exemptions at certain times and for particular classes of vehicle. But with what effect?
  • Colorado congestion cure from Daktronics
    June 14, 2016
    Daktronics is here at ITS America 2016 San Jose to highlight an impressive array of dynamic message signs (DMS) and an equally impressive recent deployment. Ski traffic congestion in Colorado had become extremely challenging for Colorado DoT with traffic rushing out to the slopes on Fridays and hurrying home on Sundays. Rather than the time and cost of building a whole new road to keep travellers moving, CDoT brought an economical solution to life: the I-70 Mountain Express Lane.
  • Inrix informs FHWA’s data improvements
    December 19, 2017
    Refinements in the data available from the US Federal Highway Administration will improve road management across America. David Crawford reports. In August 2017, the US Federal Highway Administration (FHWA) issued the first results from an upgraded version of its National Performance Management Research Data Set (NPMRDS). Developed to identify the locations and times of high congestion affecting traffic flows along America’s 259,000km (161,000 mile) national highway system, this is a key resource for sta
  • Study reveals in-car devices aid positive changes to driver behaviour
    December 3, 2012
    The results of a four-year study by the Field Operational Tests of Aftermarket and Nomadic devices in Vehicles (TeleFOT) Consortium were presented at a recent conference in Brussels. The study focused on the assessment of the impact of driver support functions provided by in-vehicle aftermarket and nomadic devices on driving and driver behaviour. Coordinated by the Technical Research Centre of Finland (VTT) and with a budget of US$19.5 million, the four-year TeleFOT project is one of the biggest traffic IC