Skip to main content

Aimsun enters partnership to develop tool for managing mixed-autonomy traffic

Aimsun has partnered with UC Berkeley’s Institute of Transportation Studies to develop Flow, a tool for managing large-scale traffic systems where human-driven and autonomous vehicles (AVs) operate together. Flow offers a suite of pre-built traffic scenarios and is now integrated with Aimsun Next mobility modelling software. The open source architecture knits together microsimulation tools with deep reinforcement learning libraries in the cloud. Launched last September, Flow allows users to build and
January 15, 2019 Read time: 2 mins

16 Aimsun has partnered with UC Berkeley’s Institute of Transportation Studies to develop Flow, a tool for managing large-scale traffic systems where human-driven and autonomous vehicles (AVs) operate together.

Flow offers a suite of pre-built traffic scenarios and is now integrated with Aimsun Next mobility modelling software. The open source architecture knits together microsimulation tools with deep reinforcement learning libraries in the cloud.

Launched last September, Flow allows users to build and combine modular traffic scenarios to tackle complex situations, the company says. For example, single-lane/multi-lane and merge building blocks can be used to study stop-and-go merging traffic behaviours along a highway.  

“In mixed-autonomy traffic control, evaluating machine learning methods is challenging due to the lack of standardised benchmarks,” says Alexandre Bayen, director, 8895 ITS Berkeley. “Systematic evaluation and comparison will not only further our understanding of the strengths of existing algorithms but also reveal their limitations and suggest directions for future research.”

For more information on companies in this article

Related Content

  • Smarter transport remains key to smart cities
    January 9, 2018
    Colin Sowman looks at some of the challenges and solutions that will provide enhanced transport efficiency in tomorrow’s smarter cities. However you define a ‘smart city’, one of the key ingredients will be an efficient transport system. As most governments and city authorities face financial constraints, incremental improvements in the existing systems is the most likely way forward. In London, new trains and signalling are improving the capacity of the Underground but that then reveals previously
  • EdgeVis removes bandwidth barriers to mobile streamed video
    October 26, 2017
    A new generation of video compression can lower transmission costs of data and make streaming from mobile and body-worn cameras a reality, as Colin Sowman discovers. Bandwidth limitations have long been the bottleneck restricting the expanded use of video streaming for ITS, monitoring and surveillance purposes. Recent years have seen this countered to some degree by the introduction of ‘edge processing’ whereby ANPR, incident detection and other image processing is moved into (or close to) the camera, so
  • Intersection management, cooperative infrastructures - what next?
    February 1, 2012
    What do recent vehicle recalls mean for future cooperative infrastructures? Anthony Smith takes a look. As ITS industry stakeholders converge on Amsterdam for the 2010 Cooperative Mobility Showcase, an unprecedentedly wide range of technologies will be on display demonstrating what might be achievable in the future from innovations based on Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications.
  • Just Zip it! Lindsay takes to the road
    October 10, 2018
    Greater vehicle connectivity is going to have huge implications for traffic management. David Arminas climbed aboard a Lindsay Road Zipper to see what this might mean in future As vice president of barrier specialist QMB Canada, Marc-Andre Seguin is sanguine about the future for moveable barriers. On the one hand, it looks good. The oft-stated advantage of moveable barriers is that the systems are cheaper to install than adding a lane or two to a highway or bridge. Directional changes to lanes can boost