Skip to main content

Real time traffic control aids travel time reduction

An IBEC working group session at ITS World Congress in Vienna in October was presented with an example of a very cost-effective means for reducing traffic travel time. There is no doubt that adaptive real-time traffic control is a very cost-effective ITS application”, Dr Ronald van Katwijk told an IBEC (International Benefits, Evaluation & Costs) working group session at the 2012 ITS World Congress in Vienna. The senior consultant with Netherlands consultant TNO and TrafficQuest, the Dutch Centre for Expert
January 11, 2013 Read time: 4 mins

An IBEC working group session at ITS World Congress in Vienna in October was presented with an example of a very cost-effective means for reducing traffic travel time.

Benefits:

• €373,554 (US$478,337) per five intersections annum of driving time savings based on the modelled peak hour exercise.

• Movement-based adaptive control improves intersection performance without increasing computational requirements.
There is no doubt that adaptive real-time traffic control is a very cost-effective ITS application”, Dr Ronald van Katwijk told an IBEC (International Benefits, Evaluation & Costs) working group session at the 2012 6456 ITS World Congress in Vienna. The senior consultant with Netherlands consultant 7087 TNO and TrafficQuest, the Dutch Centre for Expertise in Traffic Management, said over 85% of the country’s controlled intersections currently have traffic-actuated systems, using a movement-based approach.

This means that, although groups of signals are structured in stages, they can be controlled separately. This level of flexibility is necessary given the large number of separately controlled movements needed to manage the country’s changing multi-modal traffic flows (see Table 01). 

The disadvantage is that traffic-actuated systems use historic information to determine crucial parameters, such as maximum time and sequencing of green phase and coordination of offsets between intersections. Past experience does not guarantee the quality of future results, stressed van Katwijk. In addition, traffic-actuated systems suffer from ‘tunnel vision’ (when a green phase is extended for a movement without taking into account demand for other conflicting ones) and ‘near-sightedness’ (when a green phase is ended as soon as it has served current demand, even though a platoon of traffic might be approaching).

Table 01. The changing modal split in Amsterdam
Period               
Car %              
Public transport %  
Bicycle %
1986-1991 39 28 33
2005-2008 31 22 47

Problems addressed

The situation can be improved, he suggested, by using a system equipped to take the entire intersection into account (counteracting tunnel vision); consider future or pending arrivals (counteracting near-sightedness); and make short-term decisions on the basis of longer-term analysis that considers all available alternatives in detail.

Traffic-adapted systems in the Netherlands face the central problem of – given the large number of separately-controlled movements – how to come up with an optimal solution in real-time. To address this, TNO has carried out a number of modelling exercises, applying a traffic adaptive control algorithm tailored to Dutch movement-based control practice to a diverse range of intersection and demand configurations.

An illustrative example presented at Vienna covered a 1.3km stretch of road with five intersections. The modelling took place over a two-hour peak period. The results, in terms of time savings through successive junctions, appear in Table 02.

Table 02. Results of the modelling exercise
Intersection
Travel time -
current
Travel time -
new (seconds)
Reduction
K362
166658
136268 18%
K329
361209
283943
21%
K330
483359
368995
24%
K331
313973
266731
15%
K332
460170
159176 19%

These results lead to the following calculation of savings over a year. The current total driving time spent by all drivers over the entire network during one hour of the two-hour period is 228.89 hours. Taking the relative benefit over the network modelled, as compared with the currently operating control system, as a conservative 17% gives an absolute benefit in each hour of driving of 38.91 total hours.

Assuming a four-hour total daily peak traffic period gives an absolute benefit per working day of 155.65 driving hours saved (31,130 per year of 200 working days). An average valuation of €12.00 (US$15.37) per hour produces annual savings of €373,554 (US$478,337).

Best of both worlds

Comments van Katwijk: “Adaptive real-time control systems look forward in time (taking into account predicted arrivals) as opposed to traffic-actuated ones which are tuned on the basis of historical information. Most adaptive real-time control systems, however, can only optimise the sequence and duration of stages, not each traffic movement. Our approach represents the best of both worlds.

“There is a lot to be gained by looking forwards instead of backwards when determining the signal timings of an intersection. But this is computationally demanding, given real-time constraints, requiring investments in detection and computing hardware. Movement-based adaptive control significantly improves an intersection’s performance without further increasing the computational requirements.”

For more information on companies in this article

Related Content

  • Social media mooted for traffic management
    November 13, 2012
    SQLstream’s Ronnie Beggs discusses with Jason Barnes the potential and pitfalls of using social media for traffic monitoring and management. cataclysmic events such as hurricanes and tsunami have challenged perceptions of what constitutes robust traffic management infrastructure in recent times. Presumptions that only fixed systems could offer high levels of unbroken service, accuracy and communication bandwidth, have been taught some hard lessons by nature. In many respects wireless systems now represent t
  • Autopilot highlights shape of Things
    March 30, 2020
    Driverless vehicles require rich data to operate safely, and a European consortium is harnessing the Internet of Things to help.
  • Jeddah juggles transport needs of residents, pilgrims and tourists
    December 22, 2015
    Mass pilgrimages, new tourists and a growing population lead Jeddah to seek some smart transport solutions as David Crawford finds out. Rationalising traffic movement and public transport in a major Middle Eastern business and tourist centre that is also a gateway for millions of religious pilgrims every year is the challenge for the 20-year Jeddah Strategic Plan and the Jeddah Public Transport Programme (JPTP) it spawned. The latter is costed at US$8bn.
  • Bridging the highway travel information gap
    March 14, 2012
    A new traffic management solution is attempting to bridge the gap in information available on freeways and arterial roadways. Andrew Bardin Williams reports. Agencies responsible for national networks of roads around the world have the ability to measure, analyse and disseminate accurate travel information to drivers. Millions of dollars go into data collection infrastructure to collect traffic congestion and travel time information on major freeways or highways. For example, a driver on the I-210 in the Lo