Skip to main content

New German cross-industry project to develop 5G vehicle applications

A new consortium, initiated by Ericsson in Germany, aims to create an infrastructure and real application environment on a motorway test track, to carry out tests in vehicle-to-vehicle, vehicle-to-infrastructure, digitisation of the railway infrastructure and other applications using 5G technology. The 30 kilometre test track consists of several construction sections on the 30 kilometre ‘digital test field motorway’ along the A9 motorway and the high speed rail track between Nuremberg and Greding. The in
November 22, 2016 Read time: 2 mins
A new consortium, initiated by 5650 Ericsson in Germany, aims to create an infrastructure and real application environment on a motorway test track, to carry out tests in vehicle-to-vehicle, vehicle-to-infrastructure, digitisation of the railway infrastructure and other applications using 5G technology.

The 30 kilometre test track consists of several construction sections on the 30 kilometre ‘digital test field motorway’ along the A9 motorway and the high speed rail track between Nuremberg and Greding. The infrastructure is already completed in the first partial sections, meaning that live tests can begin immediately.

The project operates within an independent infrastructure and is not dependent on any commercial network, meaning that 5G prototype applications can be installed and tested regularly, in various network configurations, at any time, without restrictions. The dedicated Ericsson 5G mobile network allows live tests of real time applications, even under extreme network loads, and at very high travel speeds. Test conditions, which are hardly ever found in commercially operated live networks, can be created.

Ericsson has received permission from the German Federal Regulatory Agency to use frequencies from the 700-MHz band and will act as a network operator.

Members of the 5G Connected Mobility consortium include Ericsson, BMW Group, Deutsche Bahn, all three German mobile network operators -Deutsche Telekom, Telefónica Deutschland and Vodafone, the TU Dresden 5G Lab Germany, the Federal Highway Research Institute (BASt) and the Federal Regulatory Agency (BNetzA). The Federal Ministry of Transport and Digital Infrastructure and the Bavarian Road Construction Administration support the project.

The project aims to pool the knowledge, perspectives and recommendations gained from this partnership and further develop them with the focus on integration into international 5G standardisation activities.

Within the scope of 5G-ConnectedMobility, the consortium plans to develop use cases of associated vehicle applications, for vehicle-to-vehicle, vehicle-to-infrastructure communication, new methods of traffic information provision in real time and cross-manufacturer traffic control for automated vehicles.

Related Content

  • January 11, 2017
    RAC survey shows big safety gains with average speed enforcement
    Cheaper and easier communications are providing authorities with new options for influencing driver behaviour. Colin Sowman reports. It’s official; Average speed cameras (ASCs) cut the number of fatal or serious injury crashes by more than a third.
  • June 12, 2015
    Temporary CCTV poses more challenges than permanent installations
    Long-term roadworks pose particular problems for temporary surveillance installations. Converting the hard shoulder to a running lane, either full- or part-time, is the UK Highways Agency’s solution to ease motorway congestion. This is leading to a number of long-term projects where large stretches of the hard shoulder are closed off by temporary concrete barriers and during these roadwork programmes, temporary CCTV cameras are deployed to monitor and record vehicle traffic and workers.
  • April 20, 2023
    Abertis simulates satellite road user charging in Germany and Spain
    Munich and Barcelona will see tests of new traffic demand management platform
  • May 8, 2015
    IRD complements WIM with tyre under-inflation detection
    To complement its existing WIM offering, IRD has introduced a system to detect under-inflated and flat tyres at highway speeds. Tyre inflation pressure has both safety and economic impacts for road users and none more so than with commercial vehicles. An underinflated tyre has decreased directional control, increased risk of catastrophic failure, and negatively impacts tyre life and fuel economy. In June 2014 the USDOT published Large Truck and Bus Crash Facts 2012 in which the Federal Motor Carrier Safety