Skip to main content

Modelling could reduce traffic mayhem

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.
May 6, 2016 Read time: 2 mins

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s 5192 Swinburne University of Technology.

Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.

Led by Professor Hai L. Vu and developed in collaboration with 4728 VicRoads, the government body responsible for road management, through an Australian Research Council (ARC) Future Fellowships grant, the Congestion Breaker project has developed a mathematical approach that uses limited and incomplete data from existing operational traffic management systems to build a predictive control framework to minimise congestion.

The model optimises the traffic flows over a finite period, taking into account the short-term demand and traffic dynamic within links of the network. The resulting algorithm explicitly considers any spillback due to a queue built-up and travel time on the road between intersections and is capable of producing systems which would reduce congestion significantly.

Further innovative distributed control mechanism created in this project is inspired by research developed for packet scheduling in wireless networks. It can handle a large network containing thousands of sensors and actuators in real time.

The outcome is a comprehensive traffic management framework with computational flexibility accurate enough to reflect real urban traffic networks. It produces a scalable algorithm that can be integrated with current operating traffic management systems to reduce congestion and make better use of the existing road network infrastructure

“Our novelty is in developing an integrated traffic control scheme that combines linear model predictive control with route guidance to manage urban traffic flows, and making it scalable for large networks,” says Vu.

The researchers say the model has potential industry impact as a state-of-the-art, integrated, efficient traffic network management system. It’s a smart, scalable and easily integrated solution.

“Similar pilot projects can be developed for many other cities around the world,” says Vu. “And there are many possibilities for commercial applications in Australia and overseas in terms of smart mobility, sustainable cities for growing populations, and its concentration in big cities.”

Related Content

  • Cubic: predictive analytics is putting fortune tellers out of business
    November 23, 2018
    The rise of machine learning and artificial intelligence means that fortune tellers will soon be out of business. Ed Chavis takes a behind the scenes look at the world of predictive analytics ver since organisations started taking advantage of insights derived from Big Data, data scientists concentrated their efforts on the ability to make correct assumptions about the future. A few years later, with the help of automation, developments in machine learning (ML) and advancements in the application of a
  • AV technology ‘could reduce congestion’, says Australian minister
    February 26, 2019
    Congestion costs would drop by more than a quarter if automated vehicles (AVs) account for 30% of kilometres travelled, says Alan Tudge, Australia’s minister for cites urban infrastructure and population. Speaking at the Australia-New Zealand Cities Symposium in Sydney, Tudge revealed findings from the Bureau of Infrastructure, Transport and Regional Economics. “They estimate it would drop from $37 billion of avoidable congestion to $27 billion,” Tudge says. A 30km freeway journey in Melbourne has increas
  • Australia launches heavy vehicle navigation
    October 17, 2016
    Transport Certification Australia (TCA) has joined VicRoads and Teletrac Navman in launching a world first in heavy vehicle routing and navigation at the recent ITS World Congress in Melbourne. For the first time, road attribute information collected and managed by VicRoads through its information asset databases will be made available to telematics providers via the National Telematics Framework, which was created to enable a sustainable approach to the use of telematics and related intelligent technolo
  • MIT study combines traffic data for smarter signal timings
    April 1, 2015
    Researchers at Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions. The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Tra