Skip to main content

Melbourne uses big data to transform tram services

In Australia, Melbourne's Yarra Trams, the largest tram system in the world, is dramatically improving service on its 250 kilometres of double tracks. By using IBM big data, the cloud, mobile and analytics the company is able to reconfigure routes on the fly, pinpoint and fix problems before they occur, and respond quickly to challenges, whether it's sudden flooding, major events in the city, or just rush hour traffic. As a result, the iconic 100-year old system is consistently beating its own service
November 7, 2013 Read time: 2 mins
In Australia, Melbourne's 7525 Yarra Trams, the largest tram system in the world, is dramatically improving service on its 250 kilometres of double tracks.  By using IBM big data, the cloud, mobile and analytics the company is able to reconfigure routes on the fly, pinpoint and fix problems before they occur, and respond quickly to challenges, whether it's sudden flooding, major events in the city, or just rush hour traffic.

As a result, the iconic 100-year old system is consistently beating its own service and punctuality goals.

Yarra Tram's system works by tracking each of the 91,000 different pieces of equipment that make up the tram network, from tram cars to power lines to tracks, using intelligent sensors and information from employee and passenger reports about service and equipment. For example, an automated wheel-measuring machine built into the track at the tram depot detects the condition of a tram's wheel when it rolls over it.

This information is pulled together and hosted on the cloud, where analytics are applied to help the Yarra Trams' operations team quickly respond to, prioritise and coordinate maintenance and pinpoint future problems. Data analysis identifies trends or patterns in tram and infrastructure repair history, enabling operators to use the information as a guide for scheduling predictive maintenance. Maintenance crews receive work orders remotely on Mobile Devices, tackling repairs and potential disruptions before service is delayed, while an app provides passengers with the latest information about track tram arrival, departures, or delays and alternative routes.

For more information on companies in this article

Related Content

  • Connected vehicle data promises advanced weather warning
    August 29, 2012
    Connected vehicle research and development is being aimed at improving driver safety and mobility, but is also promising advanced weather monitoring and warning systems. Sheldon Drobot reports. Over the last few years, the United States’ Federal Highway Administration (FHWA) and Research & Innovative Technology Administration (RITA) have joined forces to promote safety, mobility and the environment through a new connected vehicle initiative. This aims to enable wireless communication between vehicles, infra
  • PTV and Econolite on road to future-proof solutions
    September 20, 2022
    Transportation simulation software specialist PTV Group and North American traffic management provider Econolite are working together to develop new mobility solutions globally. Econolite CEO Abbas Mohaddes and PTV CEO Christian Haas sat down with Daily News to talk about the challenges and opportunities they face…
  • Papercast displays piloted in Tannheim to improve bus services
    February 6, 2018
    Papercast has deployed its e-paper passenger information bus stop displays in Tannheim, Austria, as part of a strategy to improve public transport service quality, by rolling out real-time service data to its passengers. The displays are designed with the intention of operating around the clock using solar power and providing 3G mobile network connectivity. The solution is currently installed at Tannheim’s municipal office to measure passenger reaction and to define future requirements. These displays
  • Papercast displays piloted in Tannheim to improve bus services
    June 26, 2018
    Papercast has deployed its e-paper passenger information bus stop displays in Tannheim, Austria, as part of a strategy to improve public transport service quality, by rolling out real-time service data to its passengers. The displays are designed with the intention of operating around the clock using solar power and providing 3G mobile network connectivity. The Papercast solution is currently installed at Tannheim’s municipal office to measure passenger reaction and to define future requirements. These