Skip to main content

Melbourne uses big data to transform tram services

In Australia, Melbourne's Yarra Trams, the largest tram system in the world, is dramatically improving service on its 250 kilometres of double tracks. By using IBM big data, the cloud, mobile and analytics the company is able to reconfigure routes on the fly, pinpoint and fix problems before they occur, and respond quickly to challenges, whether it's sudden flooding, major events in the city, or just rush hour traffic. As a result, the iconic 100-year old system is consistently beating its own service
November 7, 2013 Read time: 2 mins
In Australia, Melbourne's 7525 Yarra Trams, the largest tram system in the world, is dramatically improving service on its 250 kilometres of double tracks.  By using IBM big data, the cloud, mobile and analytics the company is able to reconfigure routes on the fly, pinpoint and fix problems before they occur, and respond quickly to challenges, whether it's sudden flooding, major events in the city, or just rush hour traffic.

As a result, the iconic 100-year old system is consistently beating its own service and punctuality goals.

Yarra Tram's system works by tracking each of the 91,000 different pieces of equipment that make up the tram network, from tram cars to power lines to tracks, using intelligent sensors and information from employee and passenger reports about service and equipment. For example, an automated wheel-measuring machine built into the track at the tram depot detects the condition of a tram's wheel when it rolls over it.

This information is pulled together and hosted on the cloud, where analytics are applied to help the Yarra Trams' operations team quickly respond to, prioritise and coordinate maintenance and pinpoint future problems. Data analysis identifies trends or patterns in tram and infrastructure repair history, enabling operators to use the information as a guide for scheduling predictive maintenance. Maintenance crews receive work orders remotely on Mobile Devices, tackling repairs and potential disruptions before service is delayed, while an app provides passengers with the latest information about track tram arrival, departures, or delays and alternative routes.

Related Content

  • April 14, 2022
    Weighing up the future with AI
    There is broad agreement that artificial intelligence will be an important part of Weigh in Motion as we go forward – but Adam Hill finds that not everyone agrees quite how close we are to that point
  • October 22, 2014
    Bespoke ITS is helping to reduced collisions on America’s rural roads
    David Crawford cherrypicks conference and award highlights Almost 30% of all US citizens live in rural areas or very small communities, and 34 of the 50 states exceed this level in their own populations, with the proportions rising as high as 85%. And although rural routes carry only 35% of all traffic, the accidents that occur on them account for some 54% of all US road traffic accident deaths.
  • February 2, 2012
    Transport and traffic management for major sporting events
    Maurizio Tomassini, Isis, and Monica Giannini, Pluservice, detail the STADIUM project, which is intended to provide those responsible for planning major international events with a blueprint for success
  • December 15, 2015
    Mobility as a Service gaining traction in US and Europe
    As Mobility as a Service starts to move into the mainstream of transport planning, David Crawford compares European and North American initiatives. Mobility as a Service (MaaS) is a concept fast gaining traction on both sides of the Atlantic as a way of giving travellers digital multimodal one-stop shops and journey planning tools as an alternative to private car use. Planned delivery methods include subscription-based travel packages in Europe, and 'mobility aggregator' apps, including employee commute ben