Skip to main content

Melbourne uses big data to transform tram services

In Australia, Melbourne's Yarra Trams, the largest tram system in the world, is dramatically improving service on its 250 kilometres of double tracks. By using IBM big data, the cloud, mobile and analytics the company is able to reconfigure routes on the fly, pinpoint and fix problems before they occur, and respond quickly to challenges, whether it's sudden flooding, major events in the city, or just rush hour traffic. As a result, the iconic 100-year old system is consistently beating its own service
November 7, 2013 Read time: 2 mins
In Australia, Melbourne's 7525 Yarra Trams, the largest tram system in the world, is dramatically improving service on its 250 kilometres of double tracks.  By using IBM big data, the cloud, mobile and analytics the company is able to reconfigure routes on the fly, pinpoint and fix problems before they occur, and respond quickly to challenges, whether it's sudden flooding, major events in the city, or just rush hour traffic.

As a result, the iconic 100-year old system is consistently beating its own service and punctuality goals.

Yarra Tram's system works by tracking each of the 91,000 different pieces of equipment that make up the tram network, from tram cars to power lines to tracks, using intelligent sensors and information from employee and passenger reports about service and equipment. For example, an automated wheel-measuring machine built into the track at the tram depot detects the condition of a tram's wheel when it rolls over it.

This information is pulled together and hosted on the cloud, where analytics are applied to help the Yarra Trams' operations team quickly respond to, prioritise and coordinate maintenance and pinpoint future problems. Data analysis identifies trends or patterns in tram and infrastructure repair history, enabling operators to use the information as a guide for scheduling predictive maintenance. Maintenance crews receive work orders remotely on Mobile Devices, tackling repairs and potential disruptions before service is delayed, while an app provides passengers with the latest information about track tram arrival, departures, or delays and alternative routes.

Related Content

  • April 2, 2014
    Big data and GPS combine to cut emergency response times
    David Crawford looks at technologies for better emergency medical service delivery. Emergency medical services (EMS) play key roles in transporting, or bringing treatment to, patients who become ill through medical emergencies or are injured in road traffic accidents (RTAs). But awareness has been rising steadily, in the US and elsewhere, of the extent to which EMS can generate their own emergencies. The most common cause is vehicles causing or becoming involved in RTAs, as a result of driving fast under pr
  • March 30, 2012
    Xerox to help revolutionise parking at Geneva airport
    Xerox has won a contract to replace Geneva Airport’s entire parking management system for its 20 parking lots featuring more than 7,000 spaces, including walk-up pay stations, parking guidance and a global monitoring and management system which will connect with the rest of the airport’s computer systems. As part of a ten-year contract, travellers will be also able to receive information about flight delays, gate changes or customised information when they arrive at the airport parking lot.
  • January 12, 2022
    GMV tech enhances Granada bus travel 
    Passengers in Spanish city can pay using contactless cards, QR codes and EMV cards 
  • September 24, 2013
    Highways Agency trials new traffic monitoring technology
    The UK Highways Agency is trialling a system to add commercially available traffic data to its existing sources to monitor traffic flow on England’s motorways and strategic roads. Similar data sources are already used by satellite navigation devices, smartphones, and applications like Google maps. The system uses data that comes mostly from vehicle tracking devices installed by fleet operators, and a proportion from mobile sat-nav type devices, including smartphone traffic applications where the user has