Skip to main content

Mobile LiDAR technology used to capture traffic signal data across Pennsylvania

Engineering, planning and consulting services company Michael Baker International recently completed a nearly US$7-million project for the Pennsylvania Department of Transportation (PennDOT) to collect data from more than 8,600 traffic signals across the state. Over a year, the Michael Baker team, working with PennDOT’s Traffic Signal Asset Management System (TSAMS), collected nearly 20 million data fields for each of the 8,623 traffic signals analysed, which populated a centralised database to support Pen
November 30, 2016 Read time: 2 mins
Engineering, planning and consulting services company Michael Baker International recently completed a nearly US$7-million project for the 6111 Pennsylvania Department of Transportation (PennDOT) to collect data from more than 8,600 traffic signals across the state.  Over a year, the Michael Baker team, working with PennDOT’s Traffic Signal Asset Management System (TSAMS), collected nearly 20 million data fields for each of the 8,623 traffic signals analysed, which populated a centralised database to support PennDOT’s future planning, design, maintenance and operational decision making.
 
With the passage of Pennsylvania Act 89 in 2013, PennDOT identified traffic signals as an area of necessary investment and established the Green Light-Go (GLG) program to manage the dedicated traffic signal funding and corresponding maintenance and operations projects

Michael Baker’s fleet of LiDAR-equipped vehicles are capable of surveying an area by measuring the distance to a target by illuminating it with two laser lights, each of which can measure up to 600,000 points per second with a total maximum measurement frequency of 1,200,000 points per second. The firm’s LiDAR equipped vans collected all visible assets to minimise traffic disruption and prevented technicians from working in traffic lanes.
 
Mobile LiDAR equipped vans collected data from exposed traffic signal infrastructure assets, mapping entire intersections in three-dimensional point clouds, while corresponding spherical imagery was collected using a ladybug camera.

Data from traffic signal cabinet assets was collected by field staff using a project-specific iPad mobile application (app). Electronic files of traffic signal records were transferred and attached to the database and pertinent filed paper documents were scanned to retrieve information electronically.

Related Content

  • September 7, 2021
    How ITS weathers the storm on I-80
    Weather-related closures on Wyoming’s I-80 can cost as much as $11.7m each. But a new initiative is harnessing V2X technology to prevent snow shutting things down
  • January 26, 2012
    Refurbishing ageing VMS with new technology
    Virginia DoT faced a challenge common to many highway authorities around the world: the need, in economically challenging times, to replace ageing variable message signs reaching the end of their operational life. For some 25 years now, since the mid 80s, Virginia Department of Transportation (VDoT), has deployed variable message signs (VMS) as part of its motorist information systems. Throughout the state there are still many old 'flip-disk' signs. Some of the companies that provided these electronic messa
  • February 6, 2012
    Topcon mapping system
    Topcon Positioning Systems (TPS) has announced an addition to its offering of high-accuracy, mobile mapping solutions. The IP-S2 HD Mapping System is a vehicle-mounted surveying and mapping system featuring a high-definition LiDAR scanner from Velodyne Lidar.
  • March 26, 2014
    Applied Traffic unveils Bat-Box data collector
    The radar-based Bat-Box, from UK traffic and vehicle monitoring specialist Applied Traffic, is inconspicuous, easy to install, user-friendly and can be attached to existing street furniture. It detects and records the passage of vehicle and bicycles in a range of environments – including multi-lane highways, bi-directional traffic lanes, paths, lanes and cycle tracks.