Skip to main content

Cross Zlin’s optical sensors increase options for WIM

Having won the 2016 Intertraffic Innovation Award, Cross Zlin is back again with a host of new products including a shortlisted fibre-optic based weigh-in-motion system called OptiWim. Marketing manager Libor Sušil describes the system as weigh-in-free-flow as it measures the axle across the full lane width regardless of the position of the wheels and the sensor can also detect underinflated tyres even on twin wheel configurations. He likens the measuring method to that of a strain gauge but adds that
March 21, 2018 Read time: 2 mins
Made to measure: Libor Sušil of Cross Zlin

Having won the 2016 70 Intertraffic Innovation Award, 8689 Cross Zlin is back again with a host of new products including a shortlisted fibre-optic based weigh-in-motion system called OptiWim.

Marketing manager Libor Sušil describes the system as weigh-in-free-flow as it measures the axle across the full lane width regardless of the position of the wheels and the sensor can also detect underinflated tyres even on twin wheel configurations.

He likens the measuring method to that of a strain gauge but adds that the fibre-optic system provides more information, has direct temperature compensation, is unaffected by radio frequencies and achieves an accuracy of ±3%.

There are no electrical cables running to the sensor which comes in several lengths, has an expected life of 10 years and fits into a U-Bed installed in the road surface. When required, the sensor can be removed and changed without disturbing the road surface by undoing the side holder bars.

The company is in the process of having the system type approved but is confident that OptiWim’s A3 precision means it can be used for automatically penalising overloaded vehicles and will offer a speed range from 10km/h up to a theoretical 250km/h. It says automatic ticketing has seen a substantial improvement in enforcement and penalisation of violators and that removing overloaded vehicles dramatically increases a road’s lifespan.

Although the cost of individual fibre-optic sensors is higher that their traditional counterparts, Sušil says because each WIM location needs only a single sensor (in each direction), the overall cost is equivalent to using other technologies.

Related Content

  • April 16, 2024
    Intercomp brings latest weighing innovations to Intertraffic
    With over 45 years of experience in designing and manufacturing weighing solutions for the ITS industry, Intercomp is renowned for providing unparalleled quality and reliability in sensors and scales for both Weigh in Motion (WIM) and static weighing applications.
  • March 16, 2012
    Weigh in motion technology aids overweight vehicle reduction
    Innovative use of truck weighing technology is growing as strategies aimed at reducing numbers of overweight vehicles gather momentum. Business is generally good at present in the truck weighing sector in general, and weigh-in-motion (WIM) technology in particular, according to leading suppliers of systems serving to help reduce overloading. Strategies aimed at deterring excessive truck loading – cutting damage to road networks and risks to safety – vary considerably worldwide, with some governments draggin
  • February 16, 2016
    Kistler showcases OIML-certified WIM technology
    Kistler will use Intertraffic Amsterdam to highlight a major Weigh-in-Motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML).
  • March 18, 2014
    Kenya WIM system cuts four days off journey times
    Shem Oirere looks at how weigh-in-motion is helping to streamline the trucking industry in Kenya. Kenya, East Africa’s largest economy, is streamlining trucking operations on its section of the 8,800km Northern Corridor. It is both reducing the number of weighbridges and automating the remaining ones in an effort to improve efficiency and eliminate corruption.The Northern Corridor is a major gateway through Kenya to the landlocked countries of Uganda, Rwanda, Burundi, Democratic Republic of Congo and Sou