Skip to main content

Cross Zlin’s optical sensors increase options for WIM

Having won the 2016 Intertraffic Innovation Award, Cross Zlin is back again with a host of new products including a shortlisted fibre-optic based weigh-in-motion system called OptiWim. Marketing manager Libor Sušil describes the system as weigh-in-free-flow as it measures the axle across the full lane width regardless of the position of the wheels and the sensor can also detect underinflated tyres even on twin wheel configurations. He likens the measuring method to that of a strain gauge but adds that
March 21, 2018 Read time: 2 mins
Made to measure: Libor Sušil of Cross Zlin

Having won the 2016 70 Intertraffic Innovation Award, 8689 Cross Zlin is back again with a host of new products including a shortlisted fibre-optic based weigh-in-motion system called OptiWim.

Marketing manager Libor Sušil describes the system as weigh-in-free-flow as it measures the axle across the full lane width regardless of the position of the wheels and the sensor can also detect underinflated tyres even on twin wheel configurations.

He likens the measuring method to that of a strain gauge but adds that the fibre-optic system provides more information, has direct temperature compensation, is unaffected by radio frequencies and achieves an accuracy of ±3%.

There are no electrical cables running to the sensor which comes in several lengths, has an expected life of 10 years and fits into a U-Bed installed in the road surface. When required, the sensor can be removed and changed without disturbing the road surface by undoing the side holder bars.

The company is in the process of having the system type approved but is confident that OptiWim’s A3 precision means it can be used for automatically penalising overloaded vehicles and will offer a speed range from 10km/h up to a theoretical 250km/h. It says automatic ticketing has seen a substantial improvement in enforcement and penalisation of violators and that removing overloaded vehicles dramatically increases a road’s lifespan.

Although the cost of individual fibre-optic sensors is higher that their traditional counterparts, Sušil says because each WIM location needs only a single sensor (in each direction), the overall cost is equivalent to using other technologies.

For more information on companies in this article

Related Content

  • Kenya WIM system cuts four days off journey times
    March 18, 2014
    Shem Oirere looks at how weigh-in-motion is helping to streamline the trucking industry in Kenya. Kenya, East Africa’s largest economy, is streamlining trucking operations on its section of the 8,800km Northern Corridor. It is both reducing the number of weighbridges and automating the remaining ones in an effort to improve efficiency and eliminate corruption.The Northern Corridor is a major gateway through Kenya to the landlocked countries of Uganda, Rwanda, Burundi, Democratic Republic of Congo and Sou
  • Here’s why WiM is value for money
    January 23, 2025
    Weigh in Motion systems are not new. What is new is their ability to collect more data and – importantly – more accurate data about axle loading and vehicle weight. Despite the obvious benefits, including safer highways and possibility of automated legal weight enforcement, obstacles remain for faster uptake. David Arminas reports on the manufacturers’ perspective…
  • Better traffic management with acoustics? Sounds good, says SequoIA Analytics
    January 19, 2024
    French start-up is using roadside fibre-optic cables to provide better traffic data
  • Innovative WIM from Kistler
    July 31, 2015
    Kistler will be at the ITS World Congress with a major weigh-in-motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML). As the company points out, to address the ever increasing problem of pavement damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles.