Skip to main content

In-vehicle warning systems ‘reduce risk of run-off-the-road crashes’

In-vehicle lane-departure warning systems can help reduce the risk of dangerous run-off-the-road crashes, according to a new study from researchers at the University of Minnesota’s HumanFIRST Laboratory. “Run-off-the-road crashes are a huge concern, especially in rural areas,” says project co-investigator Jennifer Cooper, a HumanFIRST Lab assistant scientist. “Crash statistics tell us they contribute to more than half of all vehicle fatalities nationwide and that these crashes occur most often on two-la
August 27, 2015 Read time: 3 mins
In-vehicle lane-departure warning systems can help reduce the risk of dangerous run-off-the-road crashes, according to a new study from researchers at the University of Minnesota’s HumanFIRST Laboratory.

“Run-off-the-road crashes are a huge concern, especially in rural areas,” says project co-investigator Jennifer Cooper, a HumanFIRST Lab assistant scientist. “Crash statistics tell us they contribute to more than half of all vehicle fatalities nationwide and that these crashes occur most often on two-lane rural highways.”

The toll of run-off-the-road crashes has made reducing these fatalities a top priority for transportation safety practitioners and researchers. One common countermeasure is shoulder rumble strips, but they come with drawbacks including startling drivers into overcorrection, generating noise complaints from neighbours, and creating a danger for cyclists.

“An alternative solution to rumble strips is in-vehicle lane-departure warning systems that can track the vehicle’s position in relation to the lane boundary and issue a timely warning,” Cooper says. “Currently, in-vehicle warning systems are in the early stages of development and have little consistency in the types of interfaces they use, making it the ideal time to study exactly how these systems impact driver behaviour.”

To aid in the development of appropriate and timely warning systems, HumanFIRST researchers studied behavioural responses to in-vehicle lane-departure warning systems using a driving simulator. In the study, participants drove two simulated real-world, two-lane rural highways with a history of lane-departure crashes.

During their drives, participants experienced simulated wind gusts that pushed their vehicle out of the lane. On half the drives, the in-vehicle warning system was active, causing the seat to vibrate and warn the driver when the vehicle was travelling out of the lane; on the other half of drives, the system was inactive. The severity of the run-off-the-road event was measured by how long the driver was out of the lane and how far they travelled out of the lane. The study also looked at the effects of variation in the reliability of the warning system, the impacts of driver distraction, and whether the system causes drivers to become dependent on the lane-departure warnings.

Results reveal that the lane-departure warning system is effective, Cooper says. Researchers found that the time drivers spent outside their lane when no system was active was significantly longer than when it was active. One of the biggest predictors of how much time drivers would spend outside their lane was speed, suggesting that if drivers slow down, they can return to their lane more quickly if they unexpectedly exit the lane. Researchers also discovered that distracted driving posed significant risks.

“Drivers who actively engaged in a distraction task were more likely to travel greater distances when they unexpectedly leave their lane, which could put them at a greater risk of striking a bicyclist, highway worker, or roadside infrastructure,” Cooper says.

The study results did not show any indication that drivers became dependent or over-reliant on the warning system. In fact, when drivers drove without the lane-departure warning system after repeated exposure to it, they maintained significantly reduced time out of lane and distance out of lane—suggesting use of this lane-departure warning system may have significant long-term benefits.

Related Content

  • March 20, 2015
    Visible road markings: an essential for older drivers and intelligent vehicles
    The RAINVISION project, co-financed by the European Commission, recently held its final meeting. Over the past three years, the project has researched the impact of road markings on driver behaviour under different night weather conditions (dry, wet and wet and rainy) and has assessed how different age groups and gender groups adapt their driving based on the above mentioned conditions. The results of the project were presented and in particular, the outcomes of three different trials conducted over the pro
  • March 16, 2016
    Observing driver behaviour in real traffic condition
    The EU’s UDRIVE project will investigate driver behaviour in terms of road safety and the decarbonisation of road transport, as Nicole van Nes and Silvia Curbelo explain. There were nearly 25,700 fatalities on European Union (EU) roads in 2014 or, to look it another way, roughly 70 people are killed in traffic accidents on European roads every day - and many more are injured. Around 22% of the fatalities are pedestrians, 15% will be motorcycle riders and 8% cyclists. So despite the improvements in road safe
  • January 31, 2012
    Intersection collision avoidance system trial
    Although much of the emphasis of research into intersection management has tended to concentrate on the needs of urban locations, there remain specific issues pertaining to rural intersections which need to be addressed. Here, Rebecca Szymkowski and Greg Helgeson, Wisconsin DOT, Todd Szymkowski, University of Wisconsin-Madison, and Craig Shankwitz and Arvind Menon, University of Minnesota detail progress on an intersection collision avoidance system for more remote locations.
  • February 17, 2020
    AAA report: caught red-handed
    Using published crash statistics, the AAA Foundation for Traffic Safety’s report found that 939 people were killed in red-light running crashes in 2017 – a rise of 28% since 2012. Moreover, more than a quarter (28%) of crash deaths at signalised intersections “are the result of a driver running through a red light”.