Skip to main content

Driverless-vehicle options now include scooters

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.
November 9, 2016 Read time: 2 mins

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.

Developed by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the National University of Singapore and the Singapore-MIT Alliance for Research and Technology (SMART), the system includes several layers of software: low-level control algorithms that enable a vehicle to respond immediately to changes in its environment, such as a pedestrian darting across its path. It also includes route-planning algorithms; localisation algorithms that the vehicle uses to determine its location on a map; map-building algorithms that it uses to construct the map in the first place; a scheduling algorithm that allocates fleet resources; and an online booking system that allows users to schedule rides.

The researchers had previously used the same sensor configuration and software in trials of autonomous cars and golf carts, so the new trial completes the demonstration of a comprehensive autonomous mobility system.

Using the same control algorithms for all types of vehicles, scooters, golf carts, and city cars, has several advantages. One is that it becomes much more practical to perform reliable analyses of the system’s overall performance.

“If you have a uniform system where all the algorithms are the same, the complexity is much lower than if you have a heterogeneous system where each vehicle does something different,” says Daniela Rus, of the Electrical Engineering and Computer Science at MIT and one of the project’s leaders. “That’s useful for verifying that this multilayer complexity is correct.”

Software uniformity also means that the scheduling algorithm has more flexibility in its allocation of system resources.

“I can see its usefulness in large indoor shopping malls and amusement parks to take [mobility-impaired] people from one spot to another,” says Dan Ding, an associate professor of rehabilitation science and technology at the University of Pittsburgh, about the system.

The researchers described the design of the scooter system and the results of the trial in a paper they presented recently at the IEEE International Conference on Intelligent Transportation Systems in Rio de Janeiro, Brazil.

Related Content

  • June 7, 2012
    Camera technology a flexible and cost-effective option
    Perceptions of machine vision being an expensive solution are being challenged by developments in both core technologies and ancillaries. Here, Jason Barnes and David Crawford look at the latest developments in the sector. A notable aspect of machine vision is the flexibility it offers in terms of how and how much data is passed around a network. With smart cameras, processing capabilities at the front end mean that only that which is valid need be communicated back to a central processor of any descripti
  • April 1, 2015
    MIT study combines traffic data for smarter signal timings
    Researchers at Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions. The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Tra
  • May 24, 2022
    ‘How do you connect your dots with their dots?’
    Ahead of the European Congress in Toulouse, Joost Vantomme tells Adam Hill how Ertico-ITS Europe is looking to bring partners together in pursuit of smarter and more sustainable mobility
  • July 17, 2012
    Cloud computing technology benefits GIS
    Geographic Information Systems are a relatively late adopter of cloud computing,but the benefits of host services for geospatial data and analysis are becoming clear. Jason Barnes reports Both the concept and the reality of cloud computing have been around for some time. More and more industry sectors are entrusting external service providers with the provision of their computing services via the internet. However, the Geographic Information System (GIS) industry has been slow to embrace the trend. This is