Skip to main content

GSSI partners with MIT Lincoln Laboratory to develop LGPR for autonomous vehicles

US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.
September 11, 2017 Read time: 2 mins
US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with 2024 Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.

 
The agreement builds on GSSI’s new engineering initiative, which focuses on using GPR to solve difficult problems that cannot be solved with any other technologies. Led by newly appointed Vice President of Research and Development, David Cist, an expert engineering team is focusing on commercialising the new technology.
 
Engineers at MIT Lincoln Laboratory, who developed LGPR, have demonstrated that features in soil layers, rocks, and road bedding can be used to localize vehicles to centimetre-level accuracy. The LGPR technology has been tested for lane keeping even when snow, fog, or dust obscures above-ground features.
 
The LGPR sensor uses high-frequency radar reflections of underground features to generate a baseline map of a road's subsurface. Whenever an LGPR vehicle drives along a road, the data can be used as a reference map. On subsequent passes the LGPR equipped vehicle compares its current map against the reference map to create an estimate of the vehicle's location. This localisation has been demonstrated to be accurate to within a few centimetres, in real-time and at highway speeds, even at night in snow-storms.

For more information on companies in this article

Related Content

  • Hitachi Group to develop basic technology for preventing collisions
    October 16, 2015
    Japan-based Hitachi, Hitachi Automotive Systems and Clarion have developed the basic technology for preventing collisions while maintaining safe and practical speeds by predicting changes in pedestrian movements and rapidly calculating optimum speed patterns in real time. The companies claim to have verified the validity of the technology using experimental vehicles and determined that it can be implemented at safe and practical driving speeds. Going forward, the Hitachi Group will accelerate to further
  • Lidar: beginning to see the light
    March 14, 2022
    Lidar feels like a technology whose time has come – but why now? Adam Hill talks to manufacturers, vendors and system integrators in the sector to assess the state of play and to find out what comes next
  • Marben showcases V2X software for autonomous vehicles
    October 7, 2015
    Marben returns for its fourth participation at the ITS World Congress with an innovative demonstration of its full featured Marben V2X software solution for autonomous vehicles. In partnership with Navya, an innovative self-driving and electric vehicle supplier, and Autotalks, a leading supplier of automotive-grade V2X RF transceivers and communication processors, Marben will showcase how the communication of vehicles and traffic lights can significantly improve and secure driverless vehicles that operate o
  • Transportation infrastructure technology continues its advance
    July 17, 2012
    It is now 20 years since publication of the Strategic Plan for Intelligent Vehicle Highway Systems. A select group of luminary figures of the ITS industry give their assessment of progress to date This year the IVHS Strategic Plan turns 20, signaling the graduation of the field of Intelligent Transportation Systems from its tumultuous teens to young adulthood. After two decades tethered by the cords of youth and protected by the strict control of adult institutions, ITS has reached a turning point. Its y