Skip to main content

Hitachi Group to develop basic technology for preventing collisions

Japan-based Hitachi, Hitachi Automotive Systems and Clarion have developed the basic technology for preventing collisions while maintaining safe and practical speeds by predicting changes in pedestrian movements and rapidly calculating optimum speed patterns in real time. The companies claim to have verified the validity of the technology using experimental vehicles and determined that it can be implemented at safe and practical driving speeds. Going forward, the Hitachi Group will accelerate to further
October 16, 2015 Read time: 2 mins
Japan-based 2213 Hitachi, Hitachi Automotive Systems and Clarion have developed the basic technology for preventing collisions while maintaining safe and practical speeds by predicting changes in pedestrian movements and rapidly calculating optimum speed patterns in real time.

The companies claim to have verified the validity of the technology using experimental vehicles and determined that it can be implemented at safe and practical driving speeds. Going forward, the Hitachi Group will accelerate to further develop the technology through repeated trials and contribute to the commercialisation of autonomous driving technology.

The Hitachi Group has been conducting leading research on technologies that contribute to commercialisation of autonomous driving on local roads, in addition to autonomous driving in parking areas and expressways.

It has developed the basic technology to address the problems faced by autonomous vehicles, such as recognising obstacles and moving objects such as passing vehicles and pedestrians, humans and predicting changes in their movements, etc. and verified its validity using experimental vehicles.

Key features of the technology include speed control based on prediction of change in movement and high-speed calculation of optimum speed

Tests using experimental vehicles were conducted to verify the validity of the new technology. Results showed that it was possible to achieve practical speeds for passing through pedestrians and driving within the standard comfortable speeds for acceleration (2.2 m/s2 or less) and for change of acceleration (2.0 m/s3 or less).

Going forward, the Hitachi Group will conduct further tests using experimental vehicles in different driving environments, including at Mcity which opened at the University of Michigan in July 2015 as a controlled environment for conducting tests on autonomous vehicles and connected cars.

Related Content

  • March 31, 2017
    Clarion and Hitachi develop driverless parking system
    Hitachi Automotive Systems and Clarion have developed a remote parking system that automatically performs parallel and perpendicular parking as well as garage parking and exit from outside the vehicle through remote control using smartphones.
  • January 31, 2012
    Wireless traffic data in real time
    The effect of moving objects on the electromagnetic landscape set up by cellular telephony networks can be detected and interpreted to give real-time traffic data across large geographical areas at low cost. Here, we revisit the Celldar concept. Global economic downturn has pushed public-sector agencies, transport administrations among them, to push even harder for cost efficiencies. Unfortunately, when it comes to transport safety and efficiency the public sector often has to work up to a cost rather than
  • April 27, 2012
    Honda world first can detect the potential for traffic congestion
    Honda Motor Company has announced the successful development of what it claims is the world’s first technology to detect the potential for traffic congestion and determine whether the driving pattern of the vehicle is likely to create traffic jams. The company developed this technology while recognising that the acceleration and deceleration behaviour of one vehicle influences the traffic pattern of trailing vehicles and can trigger the traffic congestion.
  • February 20, 2023
    ServCity AV project reaches final test
    Three-year initiative in London has aimed to demonstrate practicalities of urban robotaxis