Skip to main content

Kistler locates optimum site for KiTraffic Digital 

Kistler says its latest Weigh In Motion (WiM) product is the first system of its kind without an induction loop: the sensor itself registers when a vehicle needs to be measured. 
By Adam Hill February 28, 2020 Read time: 2 mins
Kistler offers a structural road analysis service to find the optimum location for a planned WiM site

KiTraffic Digital uses only one cable per sensor - the same ethernet cable that transmits the digital signal from the WiM sensors also provides them with power, which simplifies installation and improves the overall robustness of the system.   

"Reducing the hardware in a measuring chain reduces the likelihood of component failure or uncertainties," the manufacturer suggests.

Accuracy is +/- 2%, it adds. Kistler says the sensor used in KiTraffic Digital is new, and incorporates multiple quartz crystals which deliver data via a digital interface. 

This allows for the individual calibration of each crystal, and means mechanical irregularities “therefore do not impact on the accuracy of the measurement”. The digital signal is also robust against noise interference - for example, from high voltage power lines - which allows for strong signal transmission. 

The quartz WIM sensors are generally 'maintenance free' and algorithms calculate the wheel, axle and total weight of the vehicle.

Kistler is to present KiTraffic Digital at Intertraffic 2020 in Amsterdam - and is also offering a new service to customers, the Structural Road Analysis (SRA). 

This aims to identify the ideal location for a planned WiM site on any given road, “improving measurement quality and ensuring the longest possible lifespan for the WiM installation”. 

Kistler evaluates the geometry of the site and the road itself, and measures the road surface and deeper underground structure. 

Road engineers consolidate and evaluate the data using simulation software to find the right location, and the firm says this information can also be taken into account to calibrate the KiTraffic Digital sensors more precisely. 
 

For more information on companies in this article

Related Content

  • What will MaaS look like in 2031?
    October 25, 2021
    The next decade will see the humble trip planning app transformed by machine learning and AI, revolutionising the way we move around and interact with each other, says John Nuutinen of SkedGo
  • GTT bolsters solutions with GNSS
    January 7, 2021
    Opticom solutions cover transit signal priority and traffic sensing technology
  • MIT study combines traffic data for smarter signal timings
    April 1, 2015
    Researchers at Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions. The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Tra
  • North Carolina DoT awards IRD $2.98m WiM contract
    November 8, 2023
    New agreement creates a single statewide maintenance agreement with NCDoT