Skip to main content

VI²M is the right formula for IRD

IRD is at ITS America 2016 San Jose to showcase the VectorSense tyre sensor suite for traffic and pavement design applications in conjunction with the VI²M data collection and presentation software suite. The VectorSense tyre sensor suite is a new in-road sensor technology that provides vehicle position and individual tyre footprint information for use in traffic data collection programs, commercial vehicle operations and toll road operations. This additional and advanced vehicle data provides for differ
June 13, 2016 Read time: 2 mins
Rish Malhotra of IRD
857 IRD is at ITS America 2016 San Jose to showcase the VectorSense tyre sensor suite for traffic and pavement design applications in conjunction with the VI2M data collection and presentation software suite.

The VectorSense tyre sensor suite is a new in-road sensor technology that provides vehicle position and individual tyre footprint information for use in traffic data collection programs, commercial vehicle operations and toll road operations. This additional and advanced vehicle data provides for differentiation between single standard, ‘super single’, and dual tyre width configurations – vital information for predicting pavement damage.

VectorSense sensors provide data on all types of vehicles, enabling engineers and planners to collect and analyse traffic data to optimise infrastructure investments such as bike lanes, bike paths and bike share locations. With input from VectorSense sensors, IRD says the VI2M data collection system can provide web-based reports on different tyre configurations and vehicle types. VI2M can detect all types of vehicle configurations, including bicycles, motorcycles, three-wheeled vehicles and oversized vehicles with non-standard axle arrangements.

VI2M provides an easy-to-use web-based system of dashboards that graphically represents data stored in a central repository. In addition to tabular reports on vehicle classes and axle counts, the system can generate plotted graphs for lane position, wheel measurements, and wheel type at multiple sites.

The software suite allows users to combine data from multiple sensor types and multiple locations to create a complete picture of activity across their jurisdiction.

For more information on companies in this article

Related Content

  • Guide on how to improve bike network connectivity with modest changes
    June 1, 2012
    The Mineta Transportation Institute has released a peer-reviewed research report, Low-Stress Bicycling and Network Connectivity. As part of its work, the research team created measures of low-stress bicycle route connectivity that can be used to evaluate and guide bicycle network planning. As a result, the team proposed a set of criteria by which road segments can be classified into four levels of traffic stress (LTS). The report includes a sample case study in which every street in San Jose, California, is
  • User based insurance is helping good drivers and identifying the bad ones
    November 28, 2013
    Thomas Hallauer gives an overview of Usage Based Insurance (UBI), an industry that is putting telematic devices into more vehicles than fleet management ever did. The insurance market is going through a transformation phase never seen before. Insurers have not only started to track individual cars for Usage Based Insurance (UBI), they are also using the technology to enhance consumer services as more drivers join up to these schemes. Progressive Insurance in the US has 1.4 million customers signed up to
  • Data holds the key to combating VRU casualties
    May 8, 2015
    Accident analysis software can help authorities identify common causes and make best use of their budgets, as Will Baron explains. More than 1.2 million people die on the world’s roads each year and according to the World Health Organisation, half of these are pedestrians and vulnerable road users (those whose vehicle does not have a protective shell, such as motorcyclists and cyclists). While much has been done to improve road safety and cut the number of deaths and serious injuries on our roads, a great d
  • Moxa provides clear vision for Caldecott Tunnel’s Fourth Bore
    September 15, 2014
    Caldecott Tunnel’s new Fourth Bore is utilising a bespoke high-capacity monitoring and communications network from Moxa. The Caldecott Tunnel connects Contra Costa and Alameda counties in Northern California and traditionally it has suffered severe congestion - especially during peak hours. Opened in 1937 as a twin-bore arrangement, by 1964 the increase in traffic volumes led to a third bore being added. Shortly after the third bore was opened a tidal flow was introduced with the centre bore alternating in