Skip to main content

VI²M is the right formula for IRD

IRD is at ITS America 2016 San Jose to showcase the VectorSense tyre sensor suite for traffic and pavement design applications in conjunction with the VI²M data collection and presentation software suite. The VectorSense tyre sensor suite is a new in-road sensor technology that provides vehicle position and individual tyre footprint information for use in traffic data collection programs, commercial vehicle operations and toll road operations. This additional and advanced vehicle data provides for differ
June 13, 2016 Read time: 2 mins
Rish Malhotra of IRD
857 IRD is at ITS America 2016 San Jose to showcase the VectorSense tyre sensor suite for traffic and pavement design applications in conjunction with the VI2M data collection and presentation software suite.

The VectorSense tyre sensor suite is a new in-road sensor technology that provides vehicle position and individual tyre footprint information for use in traffic data collection programs, commercial vehicle operations and toll road operations. This additional and advanced vehicle data provides for differentiation between single standard, ‘super single’, and dual tyre width configurations – vital information for predicting pavement damage.

VectorSense sensors provide data on all types of vehicles, enabling engineers and planners to collect and analyse traffic data to optimise infrastructure investments such as bike lanes, bike paths and bike share locations. With input from VectorSense sensors, IRD says the VI2M data collection system can provide web-based reports on different tyre configurations and vehicle types. VI2M can detect all types of vehicle configurations, including bicycles, motorcycles, three-wheeled vehicles and oversized vehicles with non-standard axle arrangements.

VI2M provides an easy-to-use web-based system of dashboards that graphically represents data stored in a central repository. In addition to tabular reports on vehicle classes and axle counts, the system can generate plotted graphs for lane position, wheel measurements, and wheel type at multiple sites.

The software suite allows users to combine data from multiple sensor types and multiple locations to create a complete picture of activity across their jurisdiction.

Related Content

  • April 20, 2017
    Agencies in pursuit of high-speed WIM accuracy
    Alan Dron looks at where WIM is heading in the near future. As Weigh-In-Motion (WIM) systems grow in sophistication and accuracy, they are increasingly being used in more active roles to help ensure road safety through enforcement action against overweight vehicles.
  • January 26, 2018
    Jenoptik uses sensor fusion to avoid monitoring confusion
    Jenoptik’s Uwe Urban looks at the advantages of ‘sensor fusion’ for the ITS sector. When considering the ideal sensing and monitoring system to enable the ITS sector to deliver improvements in mobility and road safety, for general policing security and border protection, we have to think beyond radar-base systems or laser scanners. What is needed today are solutions for detecting and tracking vehicles while recording evidence to deacide if any action is necessary. There is no sole sensor capable of
  • December 28, 2021
    Artificial Intelligence applications for commercial vehicle operations
    The combination of machine learning, deep neural networks and computer vision provides opportunities to address in new ways an increasing range of functions that are a part of commercial vehicle operations. Here, IRD’s Rish Malhotra details how.
  • June 3, 2020
    SPONSORED CONTENT: Using AI to achieve real traffic intelligence
    The application of artificial intelligence has the potential to transform the performance of vision-based systems used for a wide and growing set of applications. These include vehicle presence detection and identification, count and classification, and enforcement, explains Roy Czinku of International Road Dynamics