Skip to main content

Theia develops innovative distortion-free ultra-wide-angle lenses

Today’s high-resolution cameras have many advantages if they have the right lens for the job. When that includes covering large areas or reducing cost by installing fewer cameras, you need a wide-angle lens. Fisheye style lenses with barrel distortion are routinely used to cover an ultra-wide field of view; however, they create a curved and distorted image which causes significant loss of resolution at the image edges. This presents a variety of issues for ITS applications such as difficulty in identification or recognition of objects and details.
October 26, 2022 Read time: 2 mins

 

To counter the drawbacks of fisheye-style optics, Theia Technologies has developed a suite of rectilinear lenses offering a different, ultra-wide field of view without the barrel distortion or loss of edge resolution characteristic of fisheye style lenses. Theia achieves this optically, without the use of image correction software or its inherent latency.

The company employs its patented Linear Optical Technology to create a family of multi-megapixel lenses that offer horizontal fields of view up to 135 degrees with very low distortion while improving the resolution at the image edge compared to typical wide-angle lenses.

Applications for Theia’s family of ultra-wide, low distortion lenses include providing great peripheral vision for situational awareness in navigation and remote operation of vehicles and robots used in a variety of ITS applications from logistics to assisted and unmanned vehicles. They capture wide areas at short distances such as in under-vehicle surveillance and shipping container identification, among many other imaging tasks, including applications in close-up applications such as ATMs, card-locked garage entries, and multi-door entryways where both high image detail and wide fields of view are required. Other applications for Theia’s family of ultra-wide, low-distortion lenses include effectively monitoring large areas like parking lots, multi-lane tolling stations, and warehouses.

Choosing the right lens for an application depends on many factors including field of view, required image resolution, multi-spectral capability, image format and mount, among others. To assist in lens selection, Theia offers an image resolution simulator and lens calculator that relates FOV, resolution, and object distance.

Visitors to the Theia website will find it also offers other tools and white papers for a better understanding of its lens technology and selection of the optimal lens for your application.

Content produced in association with Theia Technologies

For more information on companies in this article

Related Content

  • ITS technology reduces congestion, improves workzone safety
    July 17, 2012
    As the road-building season gets under way in the US, the Federal Highway Administration has just published a White Paper which deals with the use of ITS technology in work zones. On 30 April 2009, the US Federal Highway Administration (FHWA) published a White Paper which was prepared by the US Department of Transportation (USDOT) to inform public agencies about the use of ITS to manage construction work zones. This is a particularly relevant topic given the large number of construction projects that are ex
  • Vision technology: the future in focus
    November 23, 2018
    Just a few years ago, terms such as ‘embedded’ and ‘polarisation’ were buzzwords. But now they are real and present examples of vision technology in action – and, Adam Hill finds, the ITS industry is waking up to a number of possible applications Every aspect of the intelligent transportation systems industry moves quickly – but developments in camera technology change with a rapidity which can appear quite bewildering. And with ITS providers constantly searching for an edge against fierce competitio
  • Helius and Sora lidar units on show
    September 15, 2021
    US-headquartered Cepton Technologies will be showing lidar units – the Helius and the Sora Series
  • In-vehicle vision-based systems and autonomous vehicles
    January 11, 2013
    The Artificial Vision and Intelligent Systems Laboratory (VisLab) of Italy’s Parma University has built itself a fine pedigree in basic and applied research which has developed machine vision algorithms and intelligent systems for the automotive field. In 1998, a VisLab-equipped Lancia Thema named ‘Argo’ travelled along the famous Mille Miglia race route and completed 98 per cent of it autonomously using then-current technology. In 2005, VisLab provided the vision element of the Terramax, a collaborative un