Skip to main content

Smart road layout with Lindsay’s Road Zipper

Lindsay Transportation Solutions is focusing on its Road Zipper system for ITS applications. This moveable barrier system quickly reconfigures the road to mitigate congestion, while providing positive barrier protection between opposing lanes of traffic.
October 10, 2016 Read time: 2 mins
Chris Sanders of Lindsay showcasing the Road Zipper system

7613 Lindsay Transportation Solutions is focusing on its Road Zipper system for ITS applications. This moveable barrier system quickly reconfigures the road to mitigate congestion, while providing positive barrier protection between opposing lanes of traffic. Road Zipper can be used to create flexible bus rapid transit (BRT) corridors that can be returned to traffic during non-commute periods to maximise the full use of the roadway. BRT corridors allow agencies to deliver fast, reliable, cost-effective transportation services to move people in, out, and around urban centres.

Automated decisions regarding when to change lane patterns can decrease congestion to a greater degree than reconfiguring the road based solely on a structured time schedule. Lindsay’s ITS partners collect cell phone and microwave radar data to analyse traffic patterns in real time.

Once this data is compared with historical patterns or sitespecific algorithms, the Road Zipper moveable barrier is used to make changes to the road configuration.

When considered in the planning stages of new road construction, Lindsay Transportation Solutions says the Road Zipper provides additional important options for future flexibility as the number of road users constantly increases.

This is because the greatest challenge in reconfiguring an existing roadway into a managed lanes facility is often the permanent centre median barrier. This inflexible divider bifurcates the roadway and narrows the possibilities into a “left side, right side” mentality. However, roads that are designed without any permanent concrete barriers are ultimately flexible and reconfigurable.

Moveable medians can adjust traffic flow quickly and safely, and the options increase exponentially with two or more moveable walls. Vehicles can be separated by direction, passenger count, vehicle type, speed, payment and even autonomous capability to move more people safely through a heavily travelled corridor.

For more information on companies in this article

Related Content

  • Xerox counts on machine vision for high occupancy enforcement
    October 29, 2014
    Machine vision techniques can provide solutions to some of the traffic planners most enduring problems With a high proportion of cars being occupied by the driver alone, one of the easiest, most environmentally friendly and cheapest methods of reducing congestion is to encourage more people to travel in each vehicle. So to persuade people to share rides, high occupancy lanes were devised to prioritise vehicles with (typically) three of more people on board and in some areas these vehicles are exempt from
  • Carbon finance delivers critical support to mass transit schemes
    February 2, 2012
    David Crawford investigates carbon finance in transport. World Bank carbon finance grants are delivering critical support to major mass transit deployments in emerging and developing economies. Only recently operative in the transport sector, the Clean Development Mechanism (CDM, see panel) is designed to generate additional income streams and improve internal rates of return on projects funded from public- and private-sector sources.
  • How technology is propelling the development of urban shared transport
    April 11, 2024
    Over 18 million people use ride-hailing apps in the UK alone, says Mariusz Zabrocki of Freenow
  • Lidar: beginning to see the light
    March 14, 2022
    Lidar feels like a technology whose time has come – but why now? Adam Hill talks to manufacturers, vendors and system integrators in the sector to assess the state of play and to find out what comes next