Skip to main content

Smart road layout with Lindsay’s Road Zipper

Lindsay Transportation Solutions is focusing on its Road Zipper system for ITS applications. This moveable barrier system quickly reconfigures the road to mitigate congestion, while providing positive barrier protection between opposing lanes of traffic.
October 10, 2016 Read time: 2 mins
Chris Sanders of Lindsay showcasing the Road Zipper system

7613 Lindsay Transportation Solutions is focusing on its Road Zipper system for ITS applications. This moveable barrier system quickly reconfigures the road to mitigate congestion, while providing positive barrier protection between opposing lanes of traffic. Road Zipper can be used to create flexible bus rapid transit (BRT) corridors that can be returned to traffic during non-commute periods to maximise the full use of the roadway. BRT corridors allow agencies to deliver fast, reliable, cost-effective transportation services to move people in, out, and around urban centres.

Automated decisions regarding when to change lane patterns can decrease congestion to a greater degree than reconfiguring the road based solely on a structured time schedule. Lindsay’s ITS partners collect cell phone and microwave radar data to analyse traffic patterns in real time.

Once this data is compared with historical patterns or sitespecific algorithms, the Road Zipper moveable barrier is used to make changes to the road configuration.

When considered in the planning stages of new road construction, Lindsay Transportation Solutions says the Road Zipper provides additional important options for future flexibility as the number of road users constantly increases.

This is because the greatest challenge in reconfiguring an existing roadway into a managed lanes facility is often the permanent centre median barrier. This inflexible divider bifurcates the roadway and narrows the possibilities into a “left side, right side” mentality. However, roads that are designed without any permanent concrete barriers are ultimately flexible and reconfigurable.

Moveable medians can adjust traffic flow quickly and safely, and the options increase exponentially with two or more moveable walls. Vehicles can be separated by direction, passenger count, vehicle type, speed, payment and even autonomous capability to move more people safely through a heavily travelled corridor.

For more information on companies in this article

Related Content

  • SwRI uses AI on Tennessee integrated corridor
    April 22, 2021
    SwRI is developing machine learning algorithms to help coordinate traffic management
  • SCATS study shows significant savings
    December 16, 2013
    Australian study quantifies the benefits of SCATS to the motorists, the environment and the economy. Opportunity weekday cost savings potential of some AUD16 million (US$15.2 million) has emerged from rigorous analysis of a one-day study of Australia’s Sydney Coordinated Adaptive Traffic System (SCATS) in operation. This represents 27% of the total cost of a real alternative semi-adaptive traffic control. The estimated indicative annual weekday-based value is AUD3,900 million (US$3,705 million) or 0.9% of t
  • How digital navigation is key to managing congestion
    March 24, 2023
    Satnav – not costly civil engineering projects – might point us towards better management of congested road networks, argues David Metz of University College London
  • FDOT to rebuild major segment of I-4
    September 10, 2014
    US transportation secretary Anthony Foxx has announced a Transportation Infrastructure Finance and Innovation Act (TIFIA) loan of US$950 million to help pay for the reconstruction and widening of 21 miles of Interstate 4 in metropolitan Orlando, Florida. This is the largest loan the Department has awarded to a public-private partnership (P3). When completed, the project will relieve congestion in one of the country's most heavily-travelled areas. Known as the I-4 Ultimate, the project is part of the 54-y