Skip to main content

SESA signs show flexibility

SES America has developed a new, more efficient way to display accurate travel times by collecting data directly from travel time providers such as Waze, TomTom or Google, eliminating the need to rely on a vast network of sensors deployed across a road network. "This is a new concept," said Philippe Perut, president, SES America. "Traditionally, large dynamic signs need to be connected to a larger system. We have a standalone sign that can operate independently. There's less risk and less investment for th
June 14, 2016 Read time: 2 mins
Emily Boissonneault of SESA
7846 SES America has developed a new, more efficient way to display accurate travel times by collecting data directly from travel time providers such as 6897 Waze, 1692 TomTom or 1691 Google, eliminating the need to rely on a vast network of sensors deployed across a road network.

"This is a new concept," said Philippe Perut, president, SES America. "Traditionally, large dynamic signs need to be connected to a larger system. We have a standalone sign that can operate independently. There's less risk and less investment for the city."

Relying on travel time providers allows secondary and rural roads to be covered as well as major arteries because times are typically calculated by users travelling over multiple routes rather than by vehicles passing pre-deployed sensors.

The DMS Connect solution is solar powered and can be deployed without software or roadside equipment.

Communication is done through cellular, fibre or another communication network, and the sign can also be turned into a DMS controller connected to a traffic management center (TMC) via NTCIP and display other messages sent by the TMC. "This is perfect for cities that don't want to invest in a large system," Perut said.

"It can cost hundreds of thousands of dollars to deploy a traditional system reliant on sensors. We can get that cost down to tens of thousands of dollars for the same coverage."

SES America is looking to find partners and transportation agencies to conduct trials of the technology in several metropolitan areas.

Related Content

  • Evolving technology - debating the future of the ITS industry
    January 25, 2012
    Harry Voccola talks to ITS International about where he sees the intelligent transportation industry heading
  • Missouri’s smart solution for rural road monitoring
    July 7, 2017
    David Crawford sees how Missouri is using commercially available information to rapidly improve monitoring and driver information on rural highways. Missouri is a predominantly rural state with the second largest number of farms in the country and agriculture the main occupation in 97 of its 114 counties. US statistics starkly reveal how road accidents in rural areas tend to be more serious than in urban regions and of the 32,000 US motorists killed each year, 54% die on roads in rural areas even though onl
  • Options abound for road weather sensing
    September 6, 2017
    Meteorological organisations invest millions in super-computers to crunch data for ever-more accurate forecasts but inherent unpredictability means that other methods of alerting drivers and road authorities to fast-changing weather and highway conditions are essential. For years, static weather sensors to measure factors such as surface water, ice or high roadway temperatures have been embedded in highways to provide such data. But that is changing.
  • Coded exchanges
    July 24, 2012
    For many, Ethernet- and IP-based networks are the cast-iron solution to ITS's communications needs. However, there remain issues from manufacturer to manufacturer with interpretation of what are supposed to be common standards The 'promise' of Ethernet was that different devices such as IP video cameras and traffic signals could be easily integrated into communications networks, simplifying the process of transporting data over copper, fibre or wirelessly. However, although Ethernet devices have come to pre