Skip to main content

Rise opens 6G proving ground in Sweden

AstaZero will test communications between vehicles and infrastructure
By David Arminas June 10, 2025 Read time: 2 mins
Telecom providers, AI engineers and vehicle manufacturers around the world can work together at AstaZero (image: AstaZero)

Rise (Research Institutes of Sweden) has unveiled a 6G edge-computing facility with end-to-end vehicle and infrastructure testing facilities. 

Telecom providers, AI engineers and vehicle manufacturers around the world can work together at AstaZero, the world’s first full-scale independent test environment for automated transport system and mobility connectivity. 

This includes component reliability tests in electromagnetic chambers to repeatable functionality tests at the AstaZero proving ground, where systems can be tested in a safe, realistic environment.

Rise says that, as international 3G networks are decommissioned, traffic, business and mission-critical systems, such as police, ambulances and fire brigades, face the challenge of upgrading and adapting their systems to ensure seamless integration with 6G infrastructure and technologies. 

AstaZero is now launching a system that enables communication reliability between vehicles to reach 99.999%, marking the biggest breakthrough in vehicle testing for a generation, according to the Swedish researchers.   

The next generation of critical communication (V2X) scenarios will unlock the full potential of this ecosystem and allow vehicles – both AI-enabled and non-AI-enabled – to interact within edge networks. 

To reach the required level of reliability will require tests at the individual sensor level - but also on integrated and collaborative systems, a task which has been impossible until now.

This is a critical step forward in the journey for autonomous vehicles, industrial automation and connected societies, as it allows virtual objects and situations to be tested in scenarios limited solely by the engineer’s imagination and vehicle technology.

“In the future, communication might not always originate from the sensors on the vehicle itself, but instead from sensors mounted on connected infrastructure or from the sensors of another vehicle,” said Peter Janevik, CEO, Rise AstaZero.

“In these types of systems, three key factors are crucial: reliability, ultra-fast communication and intelligent decision-making. However, the bitter truth is that without a global, harmonious and integrated testing approach, there is no guarantee that vehicles and infrastructure will have the capabilities to enable the highest level of safety with complete confidence within this connected ecosystem.”

Related Content

  • Denso demonstrates HMI systems expertise
    October 7, 2015
    Human machine interface (HMI) systems are being demonstrated for the first time by Denso at the 2015 ITS World Congress, as part of the company’s planned roadmap to fully automated driving. Denso has predicted full automation will be reached at some point after 2020, requiring cooperation between four main fields of technology.
  • Phase two for Swedish electric road
    March 29, 2021
    The project, commissioned by Trafikverket, has been running a Solaris electric bus
  • In-vehicle safety standard released for consultation
    July 24, 2012
    The new ISO 26262 standard for safety-related vehicle systems is now available for comment. MIRA's David Ward talks to ITS International about what the standard will mean for vehicle and road safety in the future. The publication on 8 July this year of ISO 26262 as a Draft International Standard (DIS) marks an important progression for the automotive - and, in time, the cooperative infrastructure - industries. A couple of years from now, automotive OEMs will be able to subscribe to a unifying standard for s
  • Communications redundancy increases VMS reliability
    December 17, 2014
    Hybrid communications to variable message signs increase resilience to natural disasters and enable deployment in remote areas, as Alan Allegretto explains. Variable Message Signs (VMSs) are a common sight and a well-proven means to improve public safety on our roads and highways. ITS professionals rank the VMS as second only to interoperable radios as the most important technology to improve effectiveness during emergency incidents and evacuations. Ironically, however, current systems suffer from one criti